Artigo Acesso aberto Revisado por pares

The Molecular Engineering of Organic Sensitizers for Solar‐Cell Applications

2012; Wiley; Volume: 125; Issue: 1 Linguagem: Inglês

10.1002/ange.201205007

ISSN

1521-3757

Autores

Jared H. Delcamp, Aswani Yella, Thomas W. Holcombe, Mohammad Khaja Nazeeruddin, Michaël Grätzel,

Tópico(s)

Extraction and Separation Processes

Resumo

Angewandte ChemieVolume 125, Issue 1 p. 394-398 Zuschrift The Molecular Engineering of Organic Sensitizers for Solar-Cell Applications† Dr. Jared H. Delcamp, Dr. Jared H. Delcamp Laboratory for Photonics and Interfaces, Institution of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, 1015 Lausanne (Switzerland)Search for more papers by this authorDr. Aswani Yella, Dr. Aswani Yella Laboratory for Photonics and Interfaces, Institution of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, 1015 Lausanne (Switzerland)Search for more papers by this authorDr. Thomas W. Holcombe, Dr. Thomas W. Holcombe Laboratory for Photonics and Interfaces, Institution of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, 1015 Lausanne (Switzerland)Search for more papers by this authorDr. Mohammad K. Nazeeruddin, Dr. Mohammad K. Nazeeruddin Laboratory for Photonics and Interfaces, Institution of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, 1015 Lausanne (Switzerland)Search for more papers by this authorProf. Michael Grätzel, Corresponding Author Prof. Michael Grätzel [email protected] Laboratory for Photonics and Interfaces, Institution of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, 1015 Lausanne (Switzerland)Laboratory for Photonics and Interfaces, Institution of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, 1015 Lausanne (Switzerland)Search for more papers by this author Dr. Jared H. Delcamp, Dr. Jared H. Delcamp Laboratory for Photonics and Interfaces, Institution of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, 1015 Lausanne (Switzerland)Search for more papers by this authorDr. Aswani Yella, Dr. Aswani Yella Laboratory for Photonics and Interfaces, Institution of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, 1015 Lausanne (Switzerland)Search for more papers by this authorDr. Thomas W. Holcombe, Dr. Thomas W. Holcombe Laboratory for Photonics and Interfaces, Institution of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, 1015 Lausanne (Switzerland)Search for more papers by this authorDr. Mohammad K. Nazeeruddin, Dr. Mohammad K. Nazeeruddin Laboratory for Photonics and Interfaces, Institution of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, 1015 Lausanne (Switzerland)Search for more papers by this authorProf. Michael Grätzel, Corresponding Author Prof. Michael Grätzel [email protected] Laboratory for Photonics and Interfaces, Institution of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, 1015 Lausanne (Switzerland)Laboratory for Photonics and Interfaces, Institution of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, 1015 Lausanne (Switzerland)Search for more papers by this author First published: 24 August 2012 https://doi.org/10.1002/ange.201205007Citations: 22 † This work was financially supported by the FP7-Energy-2010-FET project Molesol (contract No. 256617). M.G. thanks the European Research Council (ERC) for an advanced research grant (ARG) to support the Mesolight project. M.K.N. thanks the World Class University program funded by the Ministry of Education, Science and Technology through the National Research Foundation of Korea (R31-2011-000-10035-0), Department of Materials Chemistry, Korea University. A.Y. thanks the Balzan Foundation for partial financial support as part of the 2009 Balzan Prize awarded to M.G. Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Im tiefsten Inneren positiv: Das heterocyclische Ullazin, das gleichsam stark elektronenschiebend und schwach elektronenziehend wirkt, wurde in Sensibilisatoren für Farbstoffsolarzellen (DSCs) eingebaut. Ein solcher Sensibilisator verfügte über eine starke Lichtabsorption im UV/Vis-Bereich. Die entsprechende DSC erreichte eine maximale IPCE von 95 % bei 520 nm und einen Wirkungsgrad von 8.4 %. IPCE=Quanteneffizienz. Supporting Information As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Filename Description ange_201205007_sm_miscellaneous_information.pdf4.6 MB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1T. M. Figueira-Duarte, K. Müllen, Chem. Rev. 2011, 111, 7260. 10.1021/cr100428a CASPubMedWeb of Science®Google Scholar 2P. M. Beaujuge, J. M. J. Fréchet, J. Am. Chem. Soc. 2011, 133, 20009. 10.1021/ja2073643 CASPubMedWeb of Science®Google Scholar 3Y. Shirota, H. Kageyama, Chem. Rev. 2007, 107, 953. 10.1021/cr050143+ CASPubMedWeb of Science®Google Scholar 4A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595. 10.1021/cr900356p CASPubMedWeb of Science®Google Scholar 5A. Mishra, M. K. R. Fischer, P. Bäuerle, Angew. Chem. 2009, 121, 2510; 10.1002/ange.200804709 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 2474. 10.1002/anie.200804709 CASPubMedWeb of Science®Google Scholar 6J. E. Anthony, Angew. Chem. 2008, 120, 460; 10.1002/ange.200604045 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 452. 10.1002/anie.200604045 CASPubMedWeb of Science®Google Scholar 7Q. Schiermeier, J. Tollefson, T. Scully, A. Witze, O. Morton, Nature 2008, 454, 816. 10.1038/454816a CASPubMedWeb of Science®Google Scholar 8L. M. Gonçalves, V. de Zea Bermudez, H. A. Ribeiro, A. M. Mendes, Energy Environ. Sci. 2008, 1, 655. 10.1039/b807236a CASWeb of Science®Google Scholar 9B. O’Regan, M. Grätzel, Nature 1991, 353, 737. 10.1038/353737a0 CASWeb of Science®Google Scholar 10D. Butler, Nature 2008, 454, 558. 10.1038/454558a CASPubMedWeb of Science®Google Scholar 11Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, P. Wang, ACS Nano 2010, 4, 6032. 10.1021/nn101384e CASPubMedWeb of Science®Google Scholar 12C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. Grätzel, C.-G. Wu, S. M. Zakeeruddin, M. Grätzel, ACS Nano 2009, 3, 3103. 10.1021/nn900756s CASPubMedWeb of Science®Google Scholar 13Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Jpn. J. Appl. Phys. 2006, 45, L638. 10.1143/JJAP.45.L638 CASWeb of Science®Google Scholar 14M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, J. Am. Chem. Soc. 2005, 127, 16835. 10.1021/ja052467l CASPubMedWeb of Science®Google Scholar 15A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Science 2011, 334, 629. 10.1126/science.1209688 CASPubMedWeb of Science®Google Scholar 16T. Bessho, S. M. Zakeeruddin, C.-Y. Yeh, E. W.-G. Diau, M. Grätzel, Angew. Chem. 2010, 122, 6796; 10.1002/ange.201002118 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 6646. 10.1002/anie.201002118 CASPubMedWeb of Science®Google Scholar 17H. N. Tsao, C. Yi, T. Moehl, J.-H. Yum, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, ChemSusChem 2011, 4, 591. 10.1002/cssc.201100120 CASPubMedWeb of Science®Google Scholar 18Y. Bai, J. Zhang, D. Zhou, Y. Wang, M. Zhang, P. Wang, J. Am. Chem. Soc. 2011, 133, 11442. 10.1021/ja203708k CASPubMedWeb of Science®Google Scholar 19W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, P. Wang, Chem. Mater. 2010, 22, 1915. 10.1021/cm9036988 CASWeb of Science®Google Scholar 20S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchy, M. Grätzel, Chem. Commun. 2008, 5194. 10.1039/b809093a CASPubMedWeb of Science®Google Scholar 21H. Balli, M. Zeller, Helv. Chim. Acta 1983, 66, 2135. 10.1002/hlca.19830660724 CASWeb of Science®Google Scholar 22F. Gerson, A. Metzger, Helv. Chim. Acta 1983, 66, 2031. 10.1002/hlca.19830660714 CASWeb of Science®Google Scholar 23K. Kanno, Y. Liu, A. Iesato, K. Nakajima, T. Takahashi, Org. Lett. 2005, 7, 5453. 10.1021/ol052214x CASPubMedWeb of Science®Google Scholar 24V. Mamane, P. Hannen, A. Fürstner, Chem. Eur. J. 2004, 10, 4556. 10.1002/chem.200400220 CASPubMedWeb of Science®Google Scholar 25A. Fürstner, V. Mamane, J. Org. Chem. 2002, 67, 6264. 10.1021/jo025962y CASPubMedWeb of Science®Google Scholar 26R. Li, J. Liu, N. Cai, M. Zhang, P. Wang, J. Phys. Chem. B 2010, 114, 4461. 10.1021/jp101222s CASPubMedWeb of Science®Google Scholar 27N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877. 10.1021/cr940053x CASPubMedWeb of Science®Google Scholar 28R. C. Wheast, Handbook of Physics and Chemistry, 63rd ed., CRC, Boca Raton, FL, 1982. Google Scholar 29G. Boschloo, A. Hagfeldt, Acc. Chem. Res. 2009, 42, 1819. 10.1021/ar900138m CASPubMedWeb of Science®Google Scholar 30D. Kuang, S. Uchida, R. Humphry-Baker, S. M. Zakeeruddin, M. Grätzel, Angew. Chem. 2008, 120, 1949; 10.1002/ange.200705225 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 1923. 10.1002/anie.200705225 CASPubMedWeb of Science®Google Scholar 31T. Horiuchi, H. Miura, S. Uchida, J. Photochem. Photobiol. A 2004, 164, 29. 10.1016/j.jphotochem.2003.12.018 CASWeb of Science®Google Scholar 32C. Teng, X. Yang, S. Li, M. Cheng, A. Hagfeldt, L. Wu, L. Sun, Chem. Eur. J. 2010, 16, 13127. 10.1002/chem.201000460 CASPubMedWeb of Science®Google Scholar 33Y. Liang, B. Peng, J. Chen, J. Phys. Chem. C 2010, 114, 10992. 10.1021/jp1023873 CASWeb of Science®Google Scholar 34In agreement with a bulkier aryl substituent, dye-loading studies indicate a significantly lower dye adsorption onto the TiO2 surface for JD25 when compared to JD21 (ca. 30 % lower). The dye loading trend follows the same trend as substituent bulk at the 3- and 9-positions of ullazine (SI, Table S3). Google Scholar Citing Literature Volume125, Issue1January 2, 2013Pages 394-398 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation

Referência(s)