Artigo Revisado por pares

Investigation of the mass dependence of self-diffusion coefficients by molecular dynamics calculations: binary and ternary isotopic mixtures of atoms

1999; Taylor & Francis; Volume: 96; Issue: 8 Linguagem: Inglês

10.1080/00268979909483061

ISSN

1362-3028

Autores

K. Kerl, Martin Willeke,

Tópico(s)

Material Dynamics and Properties

Resumo

Extensive molecular dynamics calculations have been used to study for the first time systematically the dependence of the self-diffusion coefficients Di (i = 1, 2, 3) in binary and ternary atomic isotopic mixtures on the particle mass ratios m*2 = m 2/m 1 and m*3 = m 3/m 1 at different reduced temperatures T* and reduced particle number densities n*, using a Lennard-Jones 12-6 potential and a hard-soft-spheres potential. In addition, the dependence of Di values of binary mixtures on the mole fraction x 1 = 1—x 2 was also investigated for some thermodynamic states. The calculated values of Di can be represented quantitatively by exponential estimates of the form Di = D* i (m*2)ex i in the case of binary mixtures and Di = D 0 i (m*2)ex i (m 3)ext i in the case of ternary mixtures. D 0 i are the self-diffusion coefficients in reference mixtures of mass ratios m*2 = m*3 = 1. The dependence of the exponents ex i (m*2, T*, n*, x 1) of binary mixtures on m*2, T*, n*, and x 1 and the dependence of the exponents ext i (m*2, m*3, n*) of equimolar ternary mixtures at T* = 1.8 on the exponents ex i of the constituent binary mixtures and on m*2, m*3, and n* are discussed.

Referência(s)
Altmetric
PlumX