Artigo Revisado por pares

Distribution Behavior of Pyrene to Adsorbed Humic Acids on Kaolin

2003; Wiley; Volume: 32; Issue: 2 Linguagem: Inglês

10.2134/jeq2003.0591

ISSN

1537-2537

Autores

Motoki Terashima, Shunitz Tanaka, Masami Fukushima,

Tópico(s)

Methane Hydrates and Related Phenomena

Resumo

Journal of Environmental QualityVolume 32, Issue 2 p. 591-598 Organic Compound in the Environment Distribution Behavior of Pyrene to Adsorbed Humic Acids on Kaolin Motoki Terashima, Motoki Terashima Division of Material Science, Graduate School of Environmental Earth Science, Hokkaido Univ., Sapporo, 060-0810 JapanSearch for more papers by this authorShunitz Tanaka, Corresponding Author Shunitz Tanaka [email protected] Division of Material Science, Graduate School of Environmental Earth Science, Hokkaido Univ., Sapporo, 060-0810 JapanCorresponding author ([email protected])Search for more papers by this authorMasami Fukushima, Masami Fukushima National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, 305-8569 JapanSearch for more papers by this author Motoki Terashima, Motoki Terashima Division of Material Science, Graduate School of Environmental Earth Science, Hokkaido Univ., Sapporo, 060-0810 JapanSearch for more papers by this authorShunitz Tanaka, Corresponding Author Shunitz Tanaka [email protected] Division of Material Science, Graduate School of Environmental Earth Science, Hokkaido Univ., Sapporo, 060-0810 JapanCorresponding author ([email protected])Search for more papers by this authorMasami Fukushima, Masami Fukushima National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, 305-8569 JapanSearch for more papers by this author First published: 01 March 2003 https://doi.org/10.2134/jeq2003.5910Citations: 24Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat ABSTRACT The distribution behavior of pyrene on humic acid (HA)–kaolin complexes, prepared by adsorbing HA on kaolin, was investigated by batch experiments. The distribution coefficient (Kd) of pyrene on the HA–kaolin complex increased with the fraction (foc) of organic carbon adsorbed to the surface of the kaolin. This can be attributed to hydrophobic interactions between pyrene and the adsorbed HAs. The effects of adsorbed HAs were quantitatively evaluated by calculating the distribution coefficient (Koc) and affinity constant (Kadsoc) for pyrene to the adsorbed HAs. A fluorescence quenching method was employed to determine the affinity constant (Kaqoc) of pyrene to HAs dissolved in an aqueous solution. When the Koc values were compared with the Kaqoc values, the Koc values were found to be 4 to 11 times larger than the Kaqoc values. On the other hand, the Kadsoc values were 4 to 9 times larger than the Kaqoc values. These indicate that the affinity for pyrene is enhanced by the adsorption of HAs to kaolin. In addition, the Koc values increased with increasing average molecular weights of the HAs. These results demonstrate that HAs, when they are adsorbed to clay minerals, play an important role in the deposition of polycyclic aromatic hydrocarbons (PAHs) in a soil environment. References B.J. Alloway, and and D.C. Ayres (ed.) 1993. Chemical principles of environmental pollution. Blackie Academic & Professional, Glasgow, UK. 10.1007/978-94-011-2148-4 Web of Science®Google Scholar Chin, Y.-P. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol. 1994 28 1853–1858. https://doi.org/10.1021/es00060a015, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994PK06900019&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1021/es00060a015 CASPubMedWeb of Science®Google Scholar Chin, Y.-P. Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity. Environ. Sci. Technol. 1997 31 1630–1635. https://doi.org/10.1021/es960404k, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997XB62000026&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1021/es960404k CASWeb of Science®Google Scholar Chiou, C.T. Partition equilibria of nonionic organic compounds between soil organic matter and water. Environ. Sci. Technol. 1983 17 227–231. https://doi.org/10.1021/es00110a009, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1983QJ00500013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1021/es00110a009 CASPubMedWeb of Science®Google Scholar Danielsen, K.M. Solubility enhancement and fluorescence quenching of pyrene by humic substances: The effect of dissolved oxygen on quenching processes. Environ. Sci. Technol. 1995 29 2162–2165. https://doi.org/10.1021/es00008a042, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995RL82900064&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1021/es00008a042 CASPubMedWeb of Science®Google Scholar Fukushima, M. Elution of pyrene from activated carbon into an aqueous system containing humic acid. Environ. Sci. Technol. 1997 31 2218–2222. https://doi.org/10.1021/es960722j, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997XN75800036&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1021/es960722j CASWeb of Science®Google Scholar Gauthier, T.D. Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environ. Sci. Technol. 1986 20 1162–1166. https://doi.org/10.1021/es00153a012, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1986E601400020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1021/es00153a012 CASWeb of Science®Google Scholar Hayano, S. Surface active properties of marine humic aids. Yukagaku 1982 31 357–362 CASGoogle Scholar Jones, K.D. Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: A comparison of dissolved and clay bound humic. Environ. Sci. Technol. 1999 33 580–587. https://doi.org/10.1021/es9803207, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000078598600010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1021/es9803207 CASWeb of Science®Google Scholar Karickhoff, S.W. Sorption of hydrophobic pollutants on natural sediments. Water Res. 1979 13 241–248. https://doi.org/10.1016/0043-1354(79)90201-X, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1979GM78200004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1016/0043-1354(79)90201-X CASWeb of Science®Google Scholar Laor, Y. Phenanthrene binding and sorption to dissolved and to mineral-associated humic acid. Water Res. 1998 32 1923–1931. https://doi.org/10.1016/S0043-1354(97)00405-3, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000074735700021&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1016/S0043-1354(97)00405-3 CASWeb of Science®Google Scholar Lee, L.S. Partitioning of polycyclic aromatic hydrocarbons from diesel fuel into water. Environ. Sci. Technol. 1992a 26 2104–2110. https://doi.org/10.1021/es00035a005, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992JV98900011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1021/es00035a005 CASWeb of Science®Google Scholar Lee, L.S. Equilibrium partitioning of polycyclic aromatic hydrocarbons from coal tar into water. Environ. Sci. Technol. 1992b 26 2110–2115. https://doi.org/10.1021/es00035a006, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992JV98900012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1021/es00035a006 CASWeb of Science®Google Scholar Magee, B.R. Transport of dissolved organic macromolecules and their effect on the transport of phenanthrene in porous media. Environ. Sci. Technol. 1991 25 323–331. https://doi.org/10.1021/es00014a017, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1991EV66500022&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1021/es00014a017 CASWeb of Science®Google Scholar Mahjoub, B. Phase partition of organic pollutants between coal tar and water under variable experimental conditions. Water Res. 2000 34 3551–3560. https://doi.org/10.1016/S0043-1354(00)00100-7, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000088958700008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1016/S0043-1354(00)00100-7 CASWeb of Science®Google Scholar McCarthy, J.F. Subsurface transport of contaminants. Environ. Sci. Technol. 1989 23 496–502. https://doi.org/10.1021/es00063a001, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1989U432400005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1021/es00063a602 CASWeb of Science®Google Scholar McCarty, P.L. Trace organics in groundwater. Environ. Sci. Technol. 1981 15 40–51. https://doi.org/10.1021/es00083a003, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1981KW80400007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1021/es00083a003 CASWeb of Science®Google Scholar Meier, M. Fractionation of aquatic natural organic matter upon sorption to goethite and kaolinite. Chem. Geol. 1999 157 275–284. https://doi.org/10.1016/S0009-2541(99)00006-6, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000079987200007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1016/S0009-2541(99)00006-6 CASWeb of Science®Google Scholar Murphy, E.M. Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environ. Sci. Technol. 1990 24 1507–1516. https://doi.org/10.1021/es00080a009, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1990EA64600014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1021/es00080a009 CASWeb of Science®Google Scholar Murphy, E.M. Interaction of hydrophobic organic compounds with mineral-bound humic substances. Environ. Sci. Technol. 1994 28 1291–1299. https://doi.org/10.1021/es00056a017, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994NU80800018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1021/es00056a017 CASPubMedWeb of Science®Google Scholar Rebhun, M. Sorption of organics on clay and synthetic humic–clay complexes simulating aquifer processes. Water Res. 1992 26 79–84. https://doi.org/10.1016/0043-1354(92)90114-J, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992GU65700011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1016/0043-1354(92)90114-J CASWeb of Science®Google Scholar Schnitzer, M., and S.U. Khan. 1972. Humic substances in the environment. Marcel Dekker, New York. Google Scholar Schulthess, C.P. Humic and fulvic acid adsorption by silicon and aluminum oxide surfaces on clay minerals. Soil Sci. Soc. Am. J. 1991 55 34–42. https://doi.org/10.2136/sssaj1991.03615995005500010006x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1991FA73200006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.2136/sssaj1991.03615995005500010006x CASWeb of Science®Google Scholar Shen, Y.-H. Sorption of humic acid to soil: The role of soil mineral composition. Chemosphere 1999 38 2489–2499. https://doi.org/10.1016/S0045-6535(98)00455-X, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000079273200005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1016/S0045-6535(98)00455-X CASWeb of Science®Google Scholar Shimizu, Y. The effects of colloidal humic substances on the movement of non-ionic hydrophobic organic contaminants in groundwater. Water Sci. Technol. 1998 38 159–167. https://doi.org/10.1016/S0273-1223(98)00651-9, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000077567400021&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1016/S0273-1223(98)00618-0 CASWeb of Science®Google Scholar Shinozuka, N. Aggregation of humic acids from marine sediments. Mar. Chem. 1991 33 229–241. https://doi.org/10.1016/0304-4203(91)90069-9, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1991FP16800003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Google Scholar Swift, R.S. 1996. Organic matter characterization. p. 1018–1020. In D.L. Sparks et al. (ed.) Methods of soil analysis. Part 3. SSSA Book Ser. 5. SSSA, Madison, WI. Google Scholar Takimoto, K. Effect of linear-dodecylbenzenesulfonate and humic acid on the adsorption of tricresyl phosphate isomers onto clay minerals. Environ. Sci. Technol. 1998 32 3907–3912. https://doi.org/10.1021/es980246s, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000077561200010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Google Scholar Tanaka, S. Water solubility enhancement of pyrene in the presence of humic substances. Anal. Chim. Acta 1997 337 351–357. https://doi.org/10.1016/S0003-2670(96)00422-9, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997WG13400012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1016/S0003-2670(96)00422-9 CASWeb of Science®Google Scholar Verway, E.J.W., and J.Th.G. Overbeek. 1948. Theory of the stability of lyophobic colloids. Elsevier, Amsterdam. Google Scholar Citing Literature Volume32, Issue2March 2003Pages 591-598 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX