Towards a Saturated Molecular Genetic Linkage Map for Cultivated Sunflower
2003; Wiley; Volume: 43; Issue: 1 Linguagem: Inglês
10.2135/cropsci2003.0367
ISSN1435-0653
AutoresJu‐Kyung Yu, Shunxue Tang, Mary B. Slabaugh, Adam Heesacker, Glenn S. Cole, Martin Herring, J. F. Soper, Feng Han, Wen‐Chy Chu, D. M. Webb, L. M. Thompson, Keith J. Edwards, Simon Berry, Alberto J. León, Martín O. Grondona, Christine Olungu, Nele Maes, Steven J. Knapp,
Tópico(s)Genetic diversity and population structure
ResumoCrop ScienceVolume 43, Issue 1 p. 367-387 Genomics, Molecular Genetics & Biotechnology Towards a Saturated Molecular Genetic Linkage Map for Cultivated Sunflower Ju-Kyung Yu, Ju-Kyung Yu Dep. of Crop and Soil Science, Oregon State Univ., Corvallis, OR, 97331-3002 USASearch for more papers by this authorShunxue Tang, Shunxue Tang Dep. of Crop and Soil Science, Oregon State Univ., Corvallis, OR, 97331-3002 USASearch for more papers by this authorMary B. Slabaugh, Mary B. Slabaugh Dep. of Crop and Soil Science, Oregon State Univ., Corvallis, OR, 97331-3002 USASearch for more papers by this authorAdam Heesacker, Adam Heesacker Dep. of Crop and Soil Science, Oregon State Univ., Corvallis, OR, 97331-3002 USASearch for more papers by this authorGlenn Cole, Glenn Cole Pioneer Hi-Bred International, 18285 County Road 96, Woodland, CA, 95695-9340 USASearch for more papers by this authorMartin Herring, Martin Herring Pioneer Genetique S.A.R.L., Le Soulou, Ferme Barbara, 82700 Montech, FranceSearch for more papers by this authorJohn Soper, John Soper Pioneer Hi-Bred International, 7300 N.W. 62ND Avenue, P.O. Box 1004, Johnston, IA, 50131-1004 USASearch for more papers by this authorFeng Han, Feng Han Pioneer Hi-Bred International, 7300 N.W. 62ND Avenue, P.O. Box 1004, Johnston, IA, 50131-1004 USASearch for more papers by this authorWen-Chy Chu, Wen-Chy Chu Pioneer Hi-Bred International, 7300 N.W. 62ND Avenue, P.O. Box 1004, Johnston, IA, 50131-1004 USASearch for more papers by this authorDavid M. Webb, David M. Webb Pioneer Hi-Bred International, 7300 N.W. 62ND Avenue, P.O. Box 1004, Johnston, IA, 50131-1004 USASearch for more papers by this authorLucy Thompson, Lucy Thompson ICAR-Long Ashton Research Station, Dep. of Agricultural Sciences, Univ. of Bristol, Long Ashton, Bristol, BS18 9AF UKSearch for more papers by this authorKeith J. Edwards, Keith J. Edwards ICAR-Long Ashton Research Station, Dep. of Agricultural Sciences, Univ. of Bristol, Long Ashton, Bristol, BS18 9AF UKSearch for more papers by this authorSimon Berry, Simon Berry Advanta Seeds UK Ltd., Station Road, Docking, King's Lynn, Norfolk, PE31 8LS UKSearch for more papers by this authorAlberto J. Leon, Alberto J. Leon Advanta Seeds, Balcarce Research Station, Ruta 226, KM 60.3 (7620), Balcarce, PCIA DE BS. AS., ArgentinaSearch for more papers by this authorMartin Grondona, Martin Grondona Advanta Seeds, Balcarce Research Station, Ruta 226, KM 60.3 (7620), Balcarce, PCIA DE BS. AS., ArgentinaSearch for more papers by this authorChristine Olungu, Christine Olungu Advanta Biotechnology Department, SES-Europe NV/SA, Industriepark, Soldatenplein, Z2 nr. 15, B-3300 Tienen, BelgiumSearch for more papers by this authorNele Maes, Nele Maes Advanta Biotechnology Department, SES-Europe NV/SA, Industriepark, Soldatenplein, Z2 nr. 15, B-3300 Tienen, BelgiumSearch for more papers by this authorSteven J. Knapp, Corresponding Author Steven J. Knapp [email protected] Dep. of Crop and Soil Science, Oregon State Univ., Corvallis, OR, 97331-3002 USACorresponding author ([email protected])Search for more papers by this author Ju-Kyung Yu, Ju-Kyung Yu Dep. of Crop and Soil Science, Oregon State Univ., Corvallis, OR, 97331-3002 USASearch for more papers by this authorShunxue Tang, Shunxue Tang Dep. of Crop and Soil Science, Oregon State Univ., Corvallis, OR, 97331-3002 USASearch for more papers by this authorMary B. Slabaugh, Mary B. Slabaugh Dep. of Crop and Soil Science, Oregon State Univ., Corvallis, OR, 97331-3002 USASearch for more papers by this authorAdam Heesacker, Adam Heesacker Dep. of Crop and Soil Science, Oregon State Univ., Corvallis, OR, 97331-3002 USASearch for more papers by this authorGlenn Cole, Glenn Cole Pioneer Hi-Bred International, 18285 County Road 96, Woodland, CA, 95695-9340 USASearch for more papers by this authorMartin Herring, Martin Herring Pioneer Genetique S.A.R.L., Le Soulou, Ferme Barbara, 82700 Montech, FranceSearch for more papers by this authorJohn Soper, John Soper Pioneer Hi-Bred International, 7300 N.W. 62ND Avenue, P.O. Box 1004, Johnston, IA, 50131-1004 USASearch for more papers by this authorFeng Han, Feng Han Pioneer Hi-Bred International, 7300 N.W. 62ND Avenue, P.O. Box 1004, Johnston, IA, 50131-1004 USASearch for more papers by this authorWen-Chy Chu, Wen-Chy Chu Pioneer Hi-Bred International, 7300 N.W. 62ND Avenue, P.O. Box 1004, Johnston, IA, 50131-1004 USASearch for more papers by this authorDavid M. Webb, David M. Webb Pioneer Hi-Bred International, 7300 N.W. 62ND Avenue, P.O. Box 1004, Johnston, IA, 50131-1004 USASearch for more papers by this authorLucy Thompson, Lucy Thompson ICAR-Long Ashton Research Station, Dep. of Agricultural Sciences, Univ. of Bristol, Long Ashton, Bristol, BS18 9AF UKSearch for more papers by this authorKeith J. Edwards, Keith J. Edwards ICAR-Long Ashton Research Station, Dep. of Agricultural Sciences, Univ. of Bristol, Long Ashton, Bristol, BS18 9AF UKSearch for more papers by this authorSimon Berry, Simon Berry Advanta Seeds UK Ltd., Station Road, Docking, King's Lynn, Norfolk, PE31 8LS UKSearch for more papers by this authorAlberto J. Leon, Alberto J. Leon Advanta Seeds, Balcarce Research Station, Ruta 226, KM 60.3 (7620), Balcarce, PCIA DE BS. AS., ArgentinaSearch for more papers by this authorMartin Grondona, Martin Grondona Advanta Seeds, Balcarce Research Station, Ruta 226, KM 60.3 (7620), Balcarce, PCIA DE BS. AS., ArgentinaSearch for more papers by this authorChristine Olungu, Christine Olungu Advanta Biotechnology Department, SES-Europe NV/SA, Industriepark, Soldatenplein, Z2 nr. 15, B-3300 Tienen, BelgiumSearch for more papers by this authorNele Maes, Nele Maes Advanta Biotechnology Department, SES-Europe NV/SA, Industriepark, Soldatenplein, Z2 nr. 15, B-3300 Tienen, BelgiumSearch for more papers by this authorSteven J. Knapp, Corresponding Author Steven J. Knapp [email protected] Dep. of Crop and Soil Science, Oregon State Univ., Corvallis, OR, 97331-3002 USACorresponding author ([email protected])Search for more papers by this author First published: 01 January 2003 https://doi.org/10.2135/cropsci2003.3670Citations: 122Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The density and utility of the molecular genetic linkage map of cultivated sunflower (Helianthus annuus L.) has been greatly increased by the development and mapping of several hundred simple sequence repeat (SSR) markers. Of 1089 public SSR markers described thus far, 408 have been mapped in a recombinant inbred line (RIL) mapping population (RHA280 × RHA801). The goal of the present research was to increase the density of the sunflower map by constructing a new RIL map (PHA × PHB) based on SSRs, adding loci for newly developed SSR markers to the RHA280 × RHA801 RIL map, and integrating the restriction fragment length polymorphism (RFLP) and SSR maps of sunflower. The latter was accomplished by adding 120 SSR marker loci to a backbone of 80 RFLP marker loci on the HA370 × HA372 F2 map. The map spanned 1275.4 centimorgans (cM) and had a mean density of 6.3 cM per locus. The PHA × PHB SSR map was constructed from 264 SSR marker loci, spanned 1199.4 cM, and had a mean density of 4.5 cM per locus. The RHA280 × RHA801 map was constructed by adding 118 new SSR and insertion–deletion (INDEL) marker loci to 459 previously mapped SSR marker loci. The 577-locus map spanned 1423.0 cM and had a mean density of 2.5 cM per locus. The three maps were constructed from 1044 DNA marker loci (701 unique SSR and 89 unique RFLP or INDEL marker loci) and supply a dense genome-wide framework of sequence-based DNA markers for molecular breeding and genomics research in sunflower. References Berry S.T., Molecular marker analysis of Helianthus annuus L. 1. Restriction fragment length polymorphism between inbred lines of cultivated sunflower. Theor. Appl. Genet. (1994) 89, 435–441 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994PP55500009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1007/BF00225378 CASPubMedWeb of Science®Google Scholar Berry S.T., A.J. Leon, P. Challis, C. Livin, R. Jones, C.C. Hanfrey, S. Griffiths, and A. Roberts. 1996. Construction of a high density, composite RFLP linkage map for cultivated sunflower Helianthus annuus p. 1150–1160. In Proceedings of the 14th International Sunflower Conference, 2, Beijing, China. 12–20 June 1996. Google Scholar Berry S.T., Molecular marker analysis of Helianthus annuus L: 2. Construction of an RFLP linkage map for cultivated sunflower. Theor. Appl. Genet. (1995) 91, 195–199 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995RL40300002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1007/BF00220877 CASPubMedWeb of Science®Google Scholar Berry S.T., A.J. Leon, R. Peerbolte, C. Challis, C. Livini, R. Jones, and S. Feingold. 1997. Presentation of the Advanta sunflower RFLP linkage map for public research. p. 113–118. In Proc. 19th Sunflower Res. Workshop, Fargo, ND. 9–10 Jan. 1997. Google Scholar Bert P.F., Identification of a second linkage group carrying genes controlling resistance to downy mildew (Plasmopara halstedii) in sunflower (Helianthus annuus L.). Theor. Appl. Genet. (2001) 103, 992–997 http://doi.org/10.1007/s001220100660, 10.1007/s001220100660 CASWeb of Science®Google Scholar Bouzidi M.F., Molecular analysis of a major locus for resistance to downy mildew in sunflower with specific PCR-based markers. Theor. Appl. Genet. (2002) 104, 592–600 http://doi.org/10.1007/s00122-001-0790-3, 10.1007/s00122-001-0790-3 CASPubMedWeb of Science®Google Scholar Burke J.M., Genetics analysis of sunflower domestication. Genetics (2002) 161, 1257–1267 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000177192500028&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1093/genetics/161.3.1257 CASPubMedWeb of Science®Google Scholar Chakravarti A., A maximum likelihood method for estimating genome length using genetic linkage data. Genetics (1991) 128, 183–193 Google Scholar Fick G.N., Registration of six sunflower parental lines. :. Crop Sci. (1974) 14, 912http://doi.org/10.2135/cropsci1974.0011183X001400060060x, 10.2135/cropsci1974.0011183X001400060061x Web of Science®Google Scholar Fishman L., A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics (2001) 159, 1701–1716 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000173106800027&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1093/genetics/159.4.1701 CASPubMedWeb of Science®Google Scholar Gedil M.A. 1999. Marker development, genome mapping, and cloning of candidate disease resistance genes in sunflower, Helianthus annuus L. Ph.D. Thesis. Oregon State Univ., Corvallis, OR Google Scholar Gedil M.A., a. Candidate disease resistance genes in sunflower cloned using conserved nucleotide binding site motifs: genetic mapping and linkage to downy mildew resistance gene Pl1 gene. Genome (2001) 44, 205–212 http://doi.org/10.1139/gen-44-2-205, CASPubMedWeb of Science®Google Scholar Gedil M.A., b. An integrated restriction fragment length polymorphism-amplified fragment length polymorphism linkage map for cultivated sunflower. Genome (2001) 44, 213–221 http://doi.org/10.1139/gen-44-2-213, 10.1139/g00-111 CASPubMedWeb of Science®Google Scholar Gentzbittel L., A composite map of expressed sequences and phenotypic traits of the sunflower Helianthus annuus L. genome. Theor. Appl. Genet. (1999) 99, 218–234 http://doi.org/10.1007/s001220051228, 10.1007/s001220051228 CASWeb of Science®Google Scholar Gentzbittel L., Cloning of molecular markers for disease resistance in sunflower, Helianthus annuus L. Theor. Appl. Genet. (1998) 96, 519–525 http://doi.org/10.1007/s001220050769, 10.1007/s001220050769 CASPubMedWeb of Science®Google Scholar Gentzbittel L., Development of a consensus linkage RFLP map of cultivated sunflower (Helianthus annuus L.). Theor. Appl. Genet. (1995) 90, 1079–1086 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995RE88200024&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1007/BF00222925 CASPubMedWeb of Science®Google Scholar Gentzbittel L., RFLP studies of genetic relationships among inbred lines of the cultivated sunflower, Helianthus annuus L.: evidence for distinct restorer and maintainer germplasm pools. Theor. Appl. Genet. (1994) 89, 419–425 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994PP55500007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1007/BF00225376 CASPubMedWeb of Science®Google Scholar Haldane J.B.S., Inbreeding and linkage. Genetics (1931) 16, 357–374 http://doi.org/10.1146/annurev.ge.16.120182.002041 10.1093/genetics/16.4.357 CASPubMedWeb of Science®Google Scholar Holloway J.L., and S.J. Knapp. 1993. G-MENDEL 3.0 user's guide. p. 1–130. Oregon State University, Corvallis, OR. Web of Science®Google Scholar Hongtrakul V., Amplified fragment length polymorphisms as a tool for DNA fingerprinting sunflower germplasm: Genetic diversity among oilseed inbred lines. Theor. Appl. Genet. (1997) 95, 400–407 http://doi.org/10.1007/s001220050576, 10.1007/s001220050576 CASWeb of Science®Google Scholar Jan C.C., Construction of an RFLP linkage map for cultivated sunflower. Theor. Appl. Genet. (1998) 96, 15–22 http://doi.org/10.1007/s001220050703, 10.1007/s001220050703 CASWeb of Science®Google Scholar Knapp S.J., S.T. Berry, and L.H. Rieseberg. 2001. Genetic mapping in sunflower. p. 379–403. In R.L. Philips and I.K. Vasil (ed.) DNA markers in plants. Kluwer, Dordrecht, the Netherlands. 10.1007/978-94-015-9815-6_22 Google Scholar Knapp S.J., Mapping dominant marker using F2 matings. Theor. Appl. Genet. (1995) 90, 1079–1086 Google Scholar Kosambi D.D., The estimation of map distance from recombination values. Ann. Eugen. (1944) 12, 172–175 10.1111/j.1469-1809.1943.tb02321.x CASPubMedGoogle Scholar Lander E.S., MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics (1987) 1, 174–181 http://doi.org/10.1016/0888-7543(87)90010-3 10.1016/0888-7543(87)90010-3 CASPubMedWeb of Science®Google Scholar Lawson W.R., Marker-assisted selection for two rust resistance genes in sunflower. Mol. Breed. (1998) 4, 227–234 http://doi.org/10.1023/A:1009667112088, 10.1023/A:1009667112088 CASWeb of Science®Google Scholar Leon A.J., Genetic mapping of factors affecting quantitative variation for flowering in sunflower (Helianthus annuus L.). Crop Sci. (2000) 40, 404–407 http://doi.org/10.2135/cropsci2000.402404x, 10.2135/cropsci2000.402404x CASWeb of Science®Google Scholar Leon A.J., Genetic analysis of seed-oil concentration across generations and environments in sunflower (Helianthus annuus L.). Crop Sci. (2003) 43, 135–140 http://doi.org/10.2135/cropsci2003.0135, 10.2135/cropsci2003.1350 Web of Science®Google Scholar Leon A.J., Quantitative trait loci for growing degree days to flowering and photoperiod response in sunflower (Helianthus annuus L.). Theor. Appl. Genet. (2001) 102, 497–503 http://doi.org/10.1007/s001220051673, 10.1007/s001220051673 Web of Science®Google Scholar Leon A.J., Use of RFLP markers for genetic linkage analysis of oil percentage in sunflower seed. Crop Sci. (1995) 35, 558–564 http://doi.org/10.2135/cropsci1995.0011183X003500020046x, 10.2135/cropsci1995.0011183X003500020046x Web of Science®Google Scholar Leon A.J., Genetic mapping of a locus (hyp) affecting seed hypodermis color in sunflower. Crop Sci. (1996) 36, 1666–1668 http://doi.org/10.2135/cropsci1996.0011183X003600060041x, 10.2135/cropsci1996.0011183X003600060041x Web of Science®Google Scholar Lu Y.H., Development SCAR markers linked to the gene Or5 conferring resistance to broomrape (Orobanche cumana Wallr.) in sunflower. Theor. Appl. Genet. (2000) 100, 625–632 http://doi.org/10.1007/s001229900040, 10.1007/s001220050083 CASWeb of Science®Google Scholar Lu Y.H., Integration of a molecular linkage group containing broomrape resistance gene Or5 in to an RFLP in sunflower. Genome (1999) 42, 453–456 http://doi.org/10.1139/gen-42-3-453, 10.1139/g98-135 CASWeb of Science®Google Scholar Miller J.F., Registration of ten oilseed sunflower germplasm lines. Crop Sci. (1990) 30, 430–431 http://doi.org/10.2135/cropsci1990.0011183X003000020055x, 10.2135/cropsci1990.0011183X003000020055x Web of Science®Google Scholar Paniego N., Microsatellite isolation and characterization in sunflower (Helianthus annuus L.). Genome (2002) 45, 34–43 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000173553000006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1139/g01-120 CASPubMedWeb of Science®Google Scholar Peerbolte R.P., and J. Peleman. 1996. The Cartisol sunflower RFLP map (146 loci) extended with 291 AFLP markers. p. 174–178. In Proc. 18th Sunflower Res. Workshop, Fargo, ND. 11–12 Jan. 1996. Google Scholar Perez-Vich B., Stearoyl-ACP and oleoyl-PC destaturase genes cosegregate with quantitative trait loci underlying high stearic and high oleic acid mutant phenotypes in sunflower. Theor. Appl. Genet. (2002) 104, 338–349 http://doi.org/10.1007/s001220100712, 10.1007/s001220100712 CASPubMedWeb of Science®Google Scholar Rachid Al-Chaarani G., A QTL analysis of sunflower partial resistance to downy mildew (Plasmopara halstedii) and black stem (Phoma macdonaldii) by the use of recombinant inbred lines (RILs). Theor. Appl. Genet. (2002) 104, 490–496 http://doi.org/10.1007/s001220100742, 10.1007/s001220100742 PubMedWeb of Science®Google Scholar Rieseberg L.H. 1998. Genetic mapping as a tool for studying speciation. p. 459–487. In D.E. Soltis et al. (ed.) Molecular systematics of plants. 2nd edition. Chapman and Hall, New York. 10.1007/978-1-4615-5419-6_16 Google Scholar Rieseberg L.H., Genomic map of a diploid hybrid species. Heredity (1993) 70, 285–293 http://doi.org/10.1038/hdy.1993.41, 10.1038/hdy.1993.41 CASWeb of Science®Google Scholar Roath W.W., Registration of RHA801 sunflower germplasm. :. Crop Sci. (1981) 21, 479http://doi.org/10.2135/cropsci1981.0011183X002100030041x 10.2135/cropsci1981.0011183X002100030041x Google Scholar Tang S., Simple sequence repeat map of the sunflower genome. (. Theor. Appl. Genet. (2002) in press) Google Scholar Vear F., The genetics of resistance to five races of downy mildew (Plasmopara halstedii) in sunflower (Helianthus annuus L.). Theor. Appl. Genet. (1997) 95, 584–589 http://doi.org/10.1007/s001220050599, 10.1007/s001220050599 Web of Science®Google Scholar Vos P., AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. (1995) 23, 4407–4414 http://doi.org/10.1093/nar/23.21.4407, 10.1093/nar/23.21.4407 CASPubMedWeb of Science®Google Scholar Williams J.G.K., Genetic analysis using random amplified polymorphic DNA markers. Meth. Enzymol. (1993) 218, 704–740 http://doi.org/10.1016/0076-6879(93)18053-F 10.1016/0076-6879(93)18053-F CASPubMedWeb of Science®Google Scholar Williams J.G.K., DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. (1990) 18, 6531–6535 http://doi.org/10.1093/nar/18.22.6531, 10.1093/nar/18.22.6531 CASPubMedWeb of Science®Google Scholar Webb D.M., DNA extraction from a previously recalcitrant plant genus. Mol. Biol. Rep. (1990) 8, 180–185 http://doi.org/10.1007/BF02669514 10.1007/BF02669514 CASGoogle Scholar Yu J.K., Allelic diversity of simple sequence repeat markers among elite inbred lines in cultivated sunflower. Genome (2002) 45, 652–660 http://doi.org/10.1139/g02-025, 10.1139/g02-025 CASPubMedWeb of Science®Google Scholar Citing Literature Volume43, Issue1January–February 2003Pages 367-387 ReferencesRelatedInformation
Referência(s)