Artigo Revisado por pares

Visualization of Nuclear Spin–Spin Coupling Pathways by Real‐Space Functions

2003; Wiley; Volume: 115; Issue: 36 Linguagem: Inglês

10.1002/ange.200351713

ISSN

1521-3757

Autores

Olga L. Malkina, Vladimir G. Malkin,

Tópico(s)

Advanced Chemical Physics Studies

Resumo

Angewandte ChemieVolume 115, Issue 36 p. 4471-4474 Zuschrift Visualization of Nuclear Spin–Spin Coupling Pathways by Real-Space Functions† Olga L. Malkina Dr., Olga L. Malkina Dr. [email protected] Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84536 Bratislava, Slovakia, Fax: (+421) 2-5941-0444Search for more papers by this authorVladimir G. Malkin Dr., Vladimir G. Malkin Dr. [email protected] Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84536 Bratislava, Slovakia, Fax: (+421) 2-5941-0444Search for more papers by this author Olga L. Malkina Dr., Olga L. Malkina Dr. [email protected] Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84536 Bratislava, Slovakia, Fax: (+421) 2-5941-0444Search for more papers by this authorVladimir G. Malkin Dr., Vladimir G. Malkin Dr. [email protected] Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84536 Bratislava, Slovakia, Fax: (+421) 2-5941-0444Search for more papers by this author First published: 17 September 2003 https://doi.org/10.1002/ange.200351713Citations: 11 † This work was initially presented at the 16th European Experimental Nuclear Magnetic Resonance Conference (EENC), Prague, Czech Republic, June 9–14, 2002. Our work was supported by the Slovak Grant Agency VEGA (No. 2/3103/23) and the Alexander von Humboldt Foundation (computer donation to V.G.M.). The authors are grateful to M. Kaupp, I. Malkin, R. Reviakine, and B. Schimmelpfennig for many useful discussions and help with the computer programs. Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Wie wird Spininformation übertragen? Mit dem hier vorgestellten Ansatz zur Visualisierung der indirekten Kopplung von Kernspins lässt sich die Bedeutung der theoretisch möglichen Kopplungswege eindeutig beurteilen. So ist es möglich, Kopplungen durch den Raum oder über Wasserstoffbrücken zu untersuchen (im Bild ist die 3JP,P-Kopplungsenergiedichte im Molekül C2H2(PH2)2 gezeigt). References 1D. R. Davis, R. P. Lutz, J. D. Roberts, J. Am. Chem. Soc. 1961, 83, 246; 10.1021/ja01462a049 CASWeb of Science®Google ScholarM. Barfield, M. Karplus, J. Am. Chem. Soc. 1969, 91, 1. 10.1021/ja01029a001 CASWeb of Science®Google Scholar 2R. H. Contreras, J. E. Peralta, Prog. Nucl. Magn. Reson. Spectrosc. 2000, 37, 321, and references therein. 10.1016/S0079-6565(00)00027-3 CASWeb of Science®Google Scholar 3 3aA. J. Dingley, S. J. Grzesiek, J. Am. Chem. Soc. 1998, 120, 8293; 10.1021/ja981513x CASWeb of Science®Google Scholar 3bG. Gemmecker, Angew. Chem. 2000, 112, 1276; 10.1002/(SICI)1521-3757(20000403)112:7 3.0.CO;2-X Google ScholarAngew. Chem. Int. Ed. 2000, 39, 1224, and references therein; 10.1002/(SICI)1521-3773(20000403)39:7 3.0.CO;2-X CASPubMedWeb of Science®Google Scholar 3cA. Bagno, G. Saielli, G. Scorrano, Angew. Chem. 2001, 113, 2600; 10.1002/1521-3757(20010702)113:13 3.0.CO;2-Y Google ScholarAngew. Chem. Int. Ed. 2001, 40, 2532. 10.1002/1521-3773(20010702)40:13 3.0.CO;2-E CASPubMedWeb of Science®Google Scholar 4 4aS. A. Perera, M. Nooijen, R. J. Bartlett, J. Chem. Phys. 1996, 104, 3290; 10.1063/1.471092 CASWeb of Science®Google Scholar 4bV. G. Malkin, O. L. Malkina, L. A. Eriksson, D. R. Salahub in Modern Density Functional Theory: A Tool for Chemistry; Theoretical and Computational Chemistry, Vol. 2 (Ed ), Elsevier, Amsterdam, 1995. Google Scholar 5S. J. Wilkens, W. M. Westler, J. L. Markley, F. Weinhold, J. Am. Chem. Soc. 2001, 123, 12 026. 10.1021/ja016284k CASWeb of Science®Google Scholar 6aJ. Khandogin, T. Ziegler, Spectrochim. Acta Part A 1999, 55, 607; 10.1016/S1386-1425(98)00265-0 Web of Science®Google Scholar 6bJ. Autschbach, T. Ziegler, J. Am. Chem. Soc. 2001, 123, 5320. 10.1021/ja003866d CASPubMedWeb of Science®Google Scholar 7H. Benedict, I. G. Shenderovich, O. L. Malkina, V. G. Malkin, G. S. Denisov, N. S. Golubev, H.-H. Limbach, J. Am. Chem. Soc. 2000, 122, 1979. 10.1021/ja9907461 CASWeb of Science®Google Scholar 8A. L. Esteban, M. P. Galache, F. Mora, E. Diez, J. Casanueva, J. San Fabian, V. Barone, J. E. Peralta, R. H. Contrearas, J. Phys. Chem. A 2001, 105, 5298. 10.1021/jp0100811 CASWeb of Science®Google Scholar 9Usually only the dominant Fermi-contact term is analyzed. We will follow this line throughout the paper, though all other important terms can be visualized along the same lines. Google Scholar 10Probably the first attempt to visualize chemical-shift density (as an example of a property density) was made by C. J. Jameson, A. D. Buckingham, J. Chem. Phys. 1980, 73, 5684. 10.1063/1.440045 CASWeb of Science®Google Scholar 11To calculate CED we used the following alternative equation for the reduced coupling constant: KMN=−[2〈Ψ11|ℋ︁0|Ψ0〉 + 〈Ψ01|ℋ︁0|Ψ10> + 〈Ψ10|ℋ︁0|Ψ01〉]. This allows us to avoid visualization of an integrand containing delta functions (Fermi-contact operators). Here ℋ︁0 is the ground-state Hamiltonian, and Ψ0, Ψ10, Ψ01,and Ψ11 are unperturbed, single-perturbed (by the first and second perturbations), and bilinear-perturbed wavefunctions, respectively. The corresponding double-perturbed density matrix is easily available in DFPT. Google Scholar 12J. Kowalewski, A. Laaksonen, B. Roos, P. Siegbahn, J. Chem. Phys. 1979, 71, 2896. 10.1063/1.438691 CASWeb of Science®Google Scholar 13R. H. Contreras, J. E. Peralta, M. C. Ruiz de Azúa, C. G. Giribet, J. C. Facelli, Annu. Rep. NMR Spectrosc. 2000, 41, 55. 10.1016/S0066-4103(00)41009-4 CASWeb of Science®Google Scholar 14One can consider λ1 and λ2 as an analogy of nuclear g-values. Usually the values λ1 and λ2 are chosen to be about 10−2 au to avoid numerical noise in the calculations. Google Scholar 15CED might also be implemented in a coupled perturbed scheme or via response theory. We decided to use a DFPT approach for ease of implementation, and to simultaneously obtain the double-perturbed density. Google Scholar 16V. G. Malkin, O. L. Malkina, R. Reviakine, A. V. Arbuznikov, M. Kaupp, B. Schimmelpfennig, I. Malkin, T. Helgaker and K. Ruud, ReSpect program, version 1.1, 2002. ReSpect uses the HERMIT integral package[16a] and some part of the deMon program.[16b] Google Scholar 16aHERMIT is the integral package of Dalton, a molecular electronic structure program, Release 1.2 (2001), written by T. Helgaker, H. J. A. Jensen, P. Jørgensen, J. Olsen, K. Ruud, H. Ågren, A. A. Auer, K. L. Bak, V. Bakken, O. Christiansen, S. Coriani, P. Dahle, E. K. Dalskov, T. Enevoldsen, B. Fernandez, C. Hättig, K. Hald, A. Halkier, H. Heiberg, H. Hettema, D. Jonsson, S. Kirpekar, R. Kobayashi, H. Koch, K. V. Mikkelsen, P. Norman, M. J. Packer, T. B. Pedersen, T. A. Ruden, A. Sanchez, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. O. Sylvester-Hvid, P. R. Taylor, O. Vahtras; Google Scholar 16bD. R. Salahub, R. Fournier, P. Mlynarsky, I. Papai, A. St-Amant, J. Ushio in Density Functional Methods in Chemistry (Ed ), Springer, New York, 1991. 10.1007/978-1-4612-3136-3_6 Google Scholar 17The calculations were made with Perdew/Wang exchange[17a] and Perdew correlation functionals.[17b] Basis set BII of Kutzelnigg et al.,[17c] perturbation parameters λ1=λ2=0.01, and an extensive grid (with about 24 000 points per atom) was employed throughout this work for the numerical calculation of couplings. A much smaller grid (about 2000 points per atom) is already sufficient for visualization purposes. Visualization of CED and CDD was achieved using the MOLEKEL program.[17d] Google Scholar 17aJ. P. Perdew, Y. Wang, Phys. Rev. B 1986, 33, 8800; 10.1103/PhysRevB.33.8800 CASPubMedWeb of Science®Google Scholar 17bJ. P. Perdew, Phys. Rev. B 1986, 33, 8822; 10.1103/PhysRevB.33.8822 CASPubMedWeb of Science®Google ScholarJ. P. Perdew, Phys. Rev. B 1986, 34, 7406; 10.1103/PhysRevB.34.7406 CASPubMedWeb of Science®Google Scholar 17cW. Kutzelnigg, U. Fleischer, M. Schindler in NMR-Basic Principles and Progress, Vol. 23 (Ed ), Springer, Heidelberg, 1990, p. 165; Google Scholar 17dMOLEKEL 4.0, P. Flükiger, H. P. Lüthi, S. Portmann, J. Weber, Swiss Center for Scientific Computing, Manno, Switzerland, 2000. Google Scholar 18O. L. Malkina, R. Reviakine, M. Kaupp, V. G. Malkin, unpublished results. Google Scholar 19H. Günther, NMR Spectroscopy. An Introduction, Wiley, New York, 1980. Google Scholar 20The CED coupling (calculated by integration) is equal to 7.4 Hz, which is in good agreement with the experimental value of 7.5 Hz (see D. L. Beveridge in Semiempirical Methods of Electronic Structure Calculations (Ed.: ), Plenum, New York, 1977, p. 163). 10.1007/978-1-4684-2559-8_5 Google Scholar 21A. Soncini, P. Lazzeretti, J. Chem. Phys. 2003, 118, 7165. 10.1063/1.1561871 CASWeb of Science®Google Scholar 22See footnote [**]. Google Scholar Citing Literature Volume115, Issue36September 22, 2003Pages 4471-4474 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX