Artigo Revisado por pares

Synthesis of Nine‐Membered Carbocycles by the [4+3+2] Cycloaddition Reaction of Ethyl Cyclopropylideneacetate and Dienynes

2010; Wiley; Volume: 122; Issue: 10 Linguagem: Inglês

10.1002/ange.200907052

ISSN

1521-3757

Autores

Shinichi Saito, Kyotaro Maeda, Ryu Yamasaki, Takuya Kitamura, Minami Nakagawa, Korehito Kato, Isao Azumaya, Hyuma Masu,

Tópico(s)

Cyclopropane Reaction Mechanisms

Resumo

Angewandte ChemieVolume 122, Issue 10 p. 1874-1877 Zuschrift Synthesis of Nine-Membered Carbocycles by the [4+3+2] Cycloaddition Reaction of Ethyl Cyclopropylideneacetate and Dienynes† Shinichi Saito Prof. Dr., Shinichi Saito Prof. Dr. [email protected] Department of Chemistry, Faculty of Science, Kagurazaka, Shinjuku, Tokyo, 162-8601 (Japan), Fax: (+81) 3-5261-4631 http://www.rs.kagu.tus.ac.jp/sslab/Search for more papers by this authorKyotaro Maeda, Kyotaro Maeda Department of Chemistry, Faculty of Science, Kagurazaka, Shinjuku, Tokyo, 162-8601 (Japan), Fax: (+81) 3-5261-4631 http://www.rs.kagu.tus.ac.jp/sslab/Search for more papers by this authorRyu Yamasaki Dr., Ryu Yamasaki Dr. Department of Chemistry, Faculty of Science, Kagurazaka, Shinjuku, Tokyo, 162-8601 (Japan), Fax: (+81) 3-5261-4631 http://www.rs.kagu.tus.ac.jp/sslab/Search for more papers by this authorTakuya Kitamura, Takuya Kitamura Department of Chemistry, Faculty of Science, Kagurazaka, Shinjuku, Tokyo, 162-8601 (Japan), Fax: (+81) 3-5261-4631 http://www.rs.kagu.tus.ac.jp/sslab/Search for more papers by this authorMinami Nakagawa, Minami Nakagawa Department of Chemistry, Faculty of Science, Kagurazaka, Shinjuku, Tokyo, 162-8601 (Japan), Fax: (+81) 3-5261-4631 http://www.rs.kagu.tus.ac.jp/sslab/Search for more papers by this authorKorehito Kato, Korehito Kato Department of Chemistry, Faculty of Science, Kagurazaka, Shinjuku, Tokyo, 162-8601 (Japan), Fax: (+81) 3-5261-4631 http://www.rs.kagu.tus.ac.jp/sslab/Search for more papers by this authorIsao Azumaya Prof. Dr., Isao Azumaya Prof. Dr. Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193 (Japan)Search for more papers by this authorHyuma Masu Dr., Hyuma Masu Dr. Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193 (Japan)Search for more papers by this author Shinichi Saito Prof. Dr., Shinichi Saito Prof. Dr. [email protected] Department of Chemistry, Faculty of Science, Kagurazaka, Shinjuku, Tokyo, 162-8601 (Japan), Fax: (+81) 3-5261-4631 http://www.rs.kagu.tus.ac.jp/sslab/Search for more papers by this authorKyotaro Maeda, Kyotaro Maeda Department of Chemistry, Faculty of Science, Kagurazaka, Shinjuku, Tokyo, 162-8601 (Japan), Fax: (+81) 3-5261-4631 http://www.rs.kagu.tus.ac.jp/sslab/Search for more papers by this authorRyu Yamasaki Dr., Ryu Yamasaki Dr. Department of Chemistry, Faculty of Science, Kagurazaka, Shinjuku, Tokyo, 162-8601 (Japan), Fax: (+81) 3-5261-4631 http://www.rs.kagu.tus.ac.jp/sslab/Search for more papers by this authorTakuya Kitamura, Takuya Kitamura Department of Chemistry, Faculty of Science, Kagurazaka, Shinjuku, Tokyo, 162-8601 (Japan), Fax: (+81) 3-5261-4631 http://www.rs.kagu.tus.ac.jp/sslab/Search for more papers by this authorMinami Nakagawa, Minami Nakagawa Department of Chemistry, Faculty of Science, Kagurazaka, Shinjuku, Tokyo, 162-8601 (Japan), Fax: (+81) 3-5261-4631 http://www.rs.kagu.tus.ac.jp/sslab/Search for more papers by this authorKorehito Kato, Korehito Kato Department of Chemistry, Faculty of Science, Kagurazaka, Shinjuku, Tokyo, 162-8601 (Japan), Fax: (+81) 3-5261-4631 http://www.rs.kagu.tus.ac.jp/sslab/Search for more papers by this authorIsao Azumaya Prof. Dr., Isao Azumaya Prof. Dr. Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193 (Japan)Search for more papers by this authorHyuma Masu Dr., Hyuma Masu Dr. Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193 (Japan)Search for more papers by this author First published: 22 February 2010 https://doi.org/10.1002/ange.200907052Citations: 25 † Support form the Society of Synthetic Organic Chemistry (Japan) is gratefully acknowledged (Tanabe Seiyaku Award in Synthetic Organic Chemistry (Japan)). Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Effektiv reagiert eine Reihe von Dieninen mit Ethylcyclopropylidenacetat in Gegenwart von [Ni(cod)2]/PPh3 (cod=Cyclooctadien), wobei selektiv Cyclononadiene entstehen. Dienine mit aromatischen Ringsubstituenten sind ausgezeichnete Substrate, und die entsprechenden Tricyclen wurden in hoher Ausbeute erhalten. Die Reaktion eröffnet einen neuen Zugang zu neungliedrigen Carbocyclen (siehe Schema). Supporting Information Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Filename Description ange_200907052_sm_miscellaneous_information.pdf6.6 MB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1K. C. Nicolaou, D. Vourloumis, N. Winssinger, P. S. Baran, Angew. Chem. 2000, 112, 46–126; 10.1002/(SICI)1521-3757(20000103)112:1 3.0.CO;2-P Google ScholarAngew. Chem. Int. Ed. 2000, 39, 44–122. 10.1002/(SICI)1521-3773(20000103)39:1 3.0.CO;2-L CASPubMedWeb of Science®Google Scholar 2For recent reviews of transition-metal-catalyzed cycloaddition reactions, see: Google Scholar 2aK. P. C. Vollhardt, Angew. Chem. 1984, 96, 525–541; 10.1002/ange.19840960804 CASGoogle ScholarAngew. Chem. Int. Ed. Engl. 1984, 23, 539–556; 10.1002/anie.198405393 Web of Science®Google Scholar 2bN. E. Schore, Chem. Rev. 1988, 88, 1081–1119; 10.1021/cr00089a006 CASWeb of Science®Google Scholar 2cM. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49–92; 10.1021/cr950016l CASPubMedWeb of Science®Google Scholar 2dV. Gevorgyan, Y. Yamamoto, J. Organomet. Chem. 1999, 576, 232–247; 10.1016/S0022-328X(98)01061-4 CASWeb of Science®Google Scholar 2eS. Saito, Y. Yamamoto, Chem. Rev. 2000, 100, 2901–2915; 10.1021/cr990281x CASPubMedWeb of Science®Google Scholar 2fL. Yet, Chem. Rev. 2000, 100, 2963–3008; 10.1021/cr990407q CASPubMedWeb of Science®Google Scholar 2gJ. A. Varela, C. Saá, Chem. Rev. 2003, 103, 3787–3801; 10.1021/cr030677f CASPubMedWeb of Science®Google Scholar 2hJ. Montgomery, Angew. Chem. 2004, 116, 3980–3998; 10.1002/ange.200300634 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 3890–3908. 10.1002/anie.200300634 CASPubMedWeb of Science®Google Scholar 3 3aP. A. Wender, H. Takahashi, B. Witulski, J. Am. Chem. Soc. 1995, 117, 4720–4721; 10.1021/ja00121a036 CASWeb of Science®Google Scholar 3bP. Binger, P. Wedemann, S. I. Kozhushkov, A. de Meijere, Eur. J. Org. Chem. 1998, 113–119; 10.1002/(SICI)1099-0690(199801)1998:1 3.0.CO;2-1 CASWeb of Science®Google Scholar 3cP. A. Wender, F. C. Bi, G. G. Gamber, F. Gosselin, R. D. Hubbard, M. J. C. Scanio, R. Sun, T. J. Williams, L. Zhang, Pure Appl. Chem. 2002, 74, 25–31; 10.1351/pac200274010025 CASWeb of Science®Google Scholar 3dP. A. Wender, T. M. Pedersen, M. J. C. Scanio, J. Am. Chem. Soc. 2002, 124, 15154–15155; 10.1021/ja0285013 CASPubMedWeb of Science®Google Scholar 3eH. A. Wegner, A. de Meijere, P. A. Wender, J. Am. Chem. Soc. 2005, 127, 6530–6531; 10.1021/ja043671w CASPubMedWeb of Science®Google Scholar 3fP. A. Wender, L. O. Haustedt, J. Lim, J. A. Love, T. J. Williams, J.-Y. Yoon, J. Am. Chem. Soc. 2006, 128, 6302–6303; 10.1021/ja058590u CASPubMedWeb of Science®Google Scholar 3gZ.-X. Yu, P. H.-Y. Cheong, P. Liu, C. Y. Legault, P. A. Wender, K. N. Houk, J. Am. Chem. Soc. 2008, 130, 2378–2379; 10.1021/ja076444d CASPubMedWeb of Science®Google Scholar 3hP. A. Wender, G. G. Gamber, T. J. Williams in Modern Rhodium-Catalyzed Organic Reactions (Ed.: , Wiley-VCH, Weinheim, 2005, pp. 263–299, and references therein. 10.1002/3527604693.ch13 Web of Science®Google Scholar 4 4aP. Binger, H. M. Büch, Top. Curr. Chem. 1987, 135, 77–151; 10.1007/3-540-16662-9_4 CASWeb of Science®Google Scholar 4bP. Binger, T. Schmidt in Carbocyclic Three- and Four-Membered Ring Ccompounds, Houben-Weyl, Vol. E17b (Ed.: , Thieme, Stuttgart, 1997, pp. 2217–2294; Google Scholar 4cB. M. Trost, T. N. Nanninga, D. M. T. Chan, Organometallics 1982, 1, 1543–1545; 10.1021/om00071a030 CASWeb of Science®Google Scholar 4dH. M. L. Davies, Tetrahedron 1993, 49, 5203–5223; 10.1016/S0040-4020(01)82371-1 CASWeb of Science®Google Scholar 4eB. M. Trost, D. T. MacPherson, J. Am. Chem. Soc. 1987, 109, 3483–3483; 10.1021/ja00245a062 CASWeb of Science®Google Scholar 4fB. M. Trost, C. M. Marrs, J. Am. Chem. Soc. 1993, 115, 6636–6645; 10.1021/ja00068a021 CASWeb of Science®Google Scholar 4gM. Harmata, Adv. Synth. Catal. 2006, 348, 2297–2306; 10.1002/adsc.200600294 CASWeb of Science®Google Scholar 4hM. Gulías, J. Durán, F. López, L. Castedo, J. Mascareñas, J. Am. Chem. Soc. 2007, 129, 11026–11027; 10.1021/ja0756467 CASPubMedWeb of Science®Google Scholar 4iS. Saito, K. Takeuchi, Tetrahedron Lett. 2007, 48, 595–598; 10.1016/j.tetlet.2006.11.108 CASWeb of Science®Google Scholar 4jY.-C. Hsu, S. Datta, C.-M. Ting, R.-S. Liu, Org. Lett. 2008, 10, 521–524. 10.1021/ol7030334 CASPubMedWeb of Science®Google Scholar 5 5aP. Binger, U. Schuchardt, Chem. Ber. 1980, 113, 1063–1071; 10.1002/cber.19801130325 CASWeb of Science®Google Scholar 5bK. E. Schwiebert, J. M. Stryker, J. Am. Chem. Soc. 1995, 117, 8275–8276; 10.1021/ja00136a028 CASWeb of Science®Google Scholar 5cN. Etkin, T. L. Dzwiniel, K. E. Schweibert, J. M. Stryker, J. Am. Chem. Soc. 1998, 120, 9702–9703; 10.1021/ja982010u CASWeb of Science®Google Scholar 5dJ. Barluenga, R. Vicente, P. Barrio, L. A. López, M. Tomás, J. Borge, J. Am. Chem. Soc. 2004, 126, 14354–14355; 10.1021/ja045459y CASPubMedWeb of Science®Google Scholar 5eL. Zhao, A. de Meijere, Adv. Synth. Catal. 2006, 348, 2484–2492; 10.1002/adsc.200600348 CASWeb of Science®Google Scholar 5fN. Tsukada, Y. Sakaihara, Y. Inoue, Tetrahedron Lett. 2007, 48, 4019–4021; 10.1016/j.tetlet.2007.04.030 CASWeb of Science®Google Scholar 5gP. A. Evans, P. A. Inglesby, J. Am. Chem. Soc. 2008, 130, 12838–12839. 10.1021/ja803691p CASPubMedWeb of Science®Google Scholar 6[2+2+2+1] Cycloadditions: Google Scholar 6aB. Bennacer, M. Fujiwara, S.-Y. Lee, I. Ojima, J. Am. Chem. Soc. 2005, 127, 17756–17767; [4+2+1] cycloadditions: 10.1021/ja054221m CASPubMedWeb of Science®Google Scholar 6bP. A. Wender, N. M. Deschamps, G. G. Gamber, Angew. Chem. 2003, 115, 1897–1901; 10.1002/ange.200350949 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 1853–1857; 10.1002/anie.200350949 CASPubMedWeb of Science®Google Scholar 6cY. Ni, J. Montgomery, J. Am. Chem. Soc. 2004, 126, 11162–11163; 10.1021/ja046147y CASPubMedWeb of Science®Google Scholar 6dY. Ni, J. Montgomery, J. Am. Chem. Soc. 2006, 128, 2609–2614; [6+1] cycloadditions: 10.1021/ja057741q CASPubMedWeb of Science®Google Scholar 6eP. A. Wender, N. M. Deschamps, R. Sun, Angew. Chem. 2006, 118, 4061–4064; 10.1002/ange.200600806 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 3957–3960; [3+3+1] cycloadditions: 10.1002/anie.200600806 CASPubMedWeb of Science®Google Scholar 6fS. Y. Kim, S. I. Lee, S. Y. Choi, Y. K. Chung, Angew. Chem. 2008, 120, 4992–4995; 10.1002/ange.200800432 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 4914–4917. 10.1002/anie.200800432 CASPubMedWeb of Science®Google Scholar 7[4+2+2] Cycloadditions: Google Scholar 7aY. Chen, R. Kiattansakul, B. Ma, J. K. Snyder, J. Org. Chem. 2001, 66, 6932–6942; 10.1021/jo010268o CASPubMedWeb of Science®Google Scholar 7bP. A. Evans, J. E. Robinson, E. W. Baum, A. N. Fazal, J. Am. Chem. Soc. 2002, 124, 8782–8783; 10.1021/ja026351q CASPubMedWeb of Science®Google Scholar 7cS. R. Gilbertson, B. DeBoef, J. Am. Chem. Soc. 2002, 124, 8784–8785; 10.1021/ja026536x CASPubMedWeb of Science®Google Scholar 7dB. Ma, J. K. Snyder, Organometallics 2002, 21, 4688–4695; 10.1021/om020457c CASWeb of Science®Google Scholar 7eJ. A. Varela, L. Castedo, C. Saa, Org. Lett. 2003, 5, 2841–2844; 10.1021/ol0348710 CASPubMedWeb of Science®Google Scholar 7fP. A. Evans, E. W. Baum, J. Am. Chem. Soc. 2004, 126, 11150–11151; 10.1021/ja046030+ CASPubMedWeb of Science®Google Scholar 7gM.-H. Baik, E. W. Baum, M. C. Burland, P. A. Evans, J. Am. Chem. Soc. 2005, 127, 1602–1603; 10.1021/ja043521l CASPubMedWeb of Science®Google Scholar 7hS. I. Lee, S. Y. Park, Y. K. Chung, Adv. Synth. Catal. 2006, 348, 2531–2539; 10.1002/adsc.200600321 CASWeb of Science®Google Scholar 7iM. Murakami, S. Ashida, T. Matsuda, J. Am. Chem. Soc. 2006, 128, 2166–2167; 10.1021/ja0552895 CASPubMedWeb of Science®Google Scholar 7jP. A. Wender, J. P. Christy, J. Am. Chem. Soc. 2006, 128, 5354–5355; for other examples, see Ref. [2b,c]. 10.1021/ja060878b CASPubMedWeb of Science®Google Scholar 8 8aK. Mach, H. Antropiusova, L. Petrusova, V. Hanus, F. Turecek, P. Sedmera, Tetrahedron 1984, 40, 3295–3302; 10.1016/0040-4020(84)85014-0 CASWeb of Science®Google Scholar 8bJ. H. Rigby, M. Fleming, Tetrahedron Lett. 2002, 43, 8643–8646; for review, see, 10.1016/S0040-4039(02)02159-7 CASWeb of Science®Google ScholarJ. H. Rigby, Organic Reactions, Vol. 49 (Ed.: ), Wiley, New York, 1997, pp. 331–425. Google Scholar 9 9aB. M. Trost, P. R. Seoane, J. Am. Chem. Soc. 1987, 109, 615–617; 10.1021/ja00236a068 CASWeb of Science®Google Scholar 9bM. Murakami, K. Itami, Y. Ito, Angew. Chem. 1998, 110, 3616–3619; 10.1002/(SICI)1521-3757(19981217)110:24 3.0.CO;2-F Google ScholarAngew. Chem. Int. Ed. 1998, 37, 3418–3420; 10.1002/(SICI)1521-3773(19981231)37:24 3.0.CO;2-R CASPubMedWeb of Science®Google Scholar 9cP. H. Lee, K. Lee, Y. Kang, J. Am. Chem. Soc. 2006, 128, 1139–1146; 10.1021/ja054144v CASPubMedWeb of Science®Google Scholar 9dY. Kuninobu, A. Kawata, K. Takai, J. Am. Chem. Soc. 2006, 128, 11368–11369. 10.1021/ja064022i CASPubMedWeb of Science®Google Scholar 10For transition-metal-mediated reactions, see, Google Scholar 10aC. G. Kreiter, K. Lehr, J. Organomet. Chem. 1991, 406, 159–170; 10.1016/0022-328X(91)83183-5 CASWeb of Science®Google Scholar 10bC. G. Kreiter, K. Lehr, M. Leyendecker, W. S. Sheldrick, R. Exner, Chem. Ber. 1991, 124, 3–12, and references therein. 10.1002/cber.19911240102 CASWeb of Science®Google Scholar 11For reviews of transition-metal-catalyzed reactions of methylenecyclopropanes, see, Google Scholar 11aI. Nakamura, Y. Yamamoto, Adv. Synth. Catal. 2002, 344, 111–129; 10.1002/1615-4169(200202)344:2 3.0.CO;2-0 CASWeb of Science®Google Scholar 11bM. Rubin, M. Rubina, V. Gevorgyan, Chem. Rev. 2007, 107, 3117–3179; see also, Ref. [4a,b]. 10.1021/cr050988l CASPubMedWeb of Science®Google Scholar 12 12aS. Saito, M. Masuda, S. Komagawa, J. Am. Chem. Soc. 2004, 126, 10540–10541; 10.1021/ja0494306 CASPubMedWeb of Science®Google Scholar 12bS. Komagawa, S. Saito, Angew. Chem. 2006, 118, 2506–2509; 10.1002/ange.200504050 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 2446–2449; 10.1002/anie.200504050 CASPubMedWeb of Science®Google Scholar 12cK. Maeda, S. Saito, Tetrahedron Lett. 2007, 48, 3173–3176; 10.1016/j.tetlet.2007.03.051 CASWeb of Science®Google Scholar 12dS. Saito, S. Komagawa, I. Azumaya, M. Masuda, J. Org. Chem. 2007, 72, 9114–9120; 10.1021/jo7014714 CASPubMedWeb of Science®Google Scholar 12eR. Yamasaki, I. Sotome, S. Komagawa, I. Azumaya, H. Masu, S. Saito, Tetrahedron Lett. 2009, 50, 1143–1145; 10.1016/j.tetlet.2008.12.092 CASWeb of Science®Google Scholar 12fS. Komagawa, K. Takeuchi, I. Sotome, I. Azumaya, H. Masu, R. Yamasaki, S. Saito, J. Org. Chem. 2009, 74, 3323–3329; 10.1021/jo900189g CASPubMedWeb of Science®Google Scholar 12gR. Yamasaki, N. Terashima, I. Sotome, S. Komagawa, S. Saito, J. Org. Chem. 2010, 75, 480–483; for review, see, 10.1021/jo902251m CASPubMedWeb of Science®Google Scholar 12hS. Komagawa, R. Yamasaki, S. Saito, J. Synth. Org. Chem. Jpn. 2008, 66, 974–982. 10.5059/yukigoseikyokaishi.66.974 CASWeb of Science®Google Scholar 13Recent examples: Google Scholar 13aW. J. Yoo, A. Allen, K. Villeneuve, W. Tam, Org. Lett. 2005, 7, 5853–5856; 10.1021/ol052412o CASPubMedWeb of Science®Google Scholar 13bS.-J. Paik, S. U. Son, Y. K. Chung, Org. Lett. 1999, 1, 2045–2047; 10.1021/ol990169l CASWeb of Science®Google Scholar 13cS. R. Gilbertson, G. S. Hoge, D. G. Genov, J. Org. Chem. 1998, 63, 10077–10080; 10.1021/jo981870q CASWeb of Science®Google Scholar 13dK. Kumar, R. S. Jolly, Tetrahedron Lett. 1998, 39, 3047–3048. 10.1016/S0040-4039(98)00353-0 CASWeb of Science®Google Scholar 14For closely related nickel-catalyzed reactions, see: Google Scholar 14aP. A. Wender, T. E. Jenkins, J. Am. Chem. Soc. 1989, 111, 6432–6434; 10.1021/ja00198a071 CASWeb of Science®Google Scholar 14bP. A. Wender, T. E. Jenkins, S. Suzuki, J. Am. Chem. Soc. 1995, 117, 1843–1844; 10.1021/ja00111a028 CASWeb of Science®Google Scholar 14cP. A. Wender, T. E. Smith, J. Org. Chem. 1996, 61, 824–825; 10.1021/jo9519827 CASWeb of Science®Google Scholar 14dP. A. Wender, T. E. Smith, Tetrahedron 1998, 54, 1255–1275. 10.1016/S0040-4020(97)10223-X CASWeb of Science®Google Scholar 15Wender et al. reported that [Ni(cod)2]/PPh3 is a poor catalyst for the [4+2] cycloaddition reactions of dienynes and used tri-o-biphenyl phosphite as the ligand (Ref. [14a]). We assume that the bulky phosphite ligand accelerated the reductive elimination of the Ni species from the nickelacycloheptadiene intermediate. On the other hand, the reductive elimination is slow in the presence of PPh3, and the insertion of 1 to the nickelacycloheptadiene would occur. Google Scholar 16The attempted reactions of dienynes with internal alkyne moiety did not proceed. Google Scholar 17The details of the observed regioselectivity will be studied in due course. Google Scholar 18X-ray data were collected on a CCD detector. The crystal structure was solved by direct methods SHELXS-97 and refined by full-matrix least-squares SHELXL-97 (Ref. [17]). All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included as their calculated positions. Crystal data for 3 i: C16H22O3 ; Mr=262.34 g mol−1, colorless prism measuring 0.4×0.4×0.35 mm, triclinic, , a=10.481(2), b=10.876(2), c=13.831(2) Å, α=103.367(2), β=110.059(2), γ=90.337(2)°, V=1434.6(4) Å3, Z=4, ρcalcd=1.215 g cm−3, 2θmax=56.56°, T=150 K, 8014 reflections measured, 6094 unique (Rint=0.0157), μ=0.082 mm−1. The final R1 and wR2 was 0.0584 and 0.1323 (all data). The residual electron densities (peak and hole) were 0.284 and −0.197 e Å−3. Two independent molecules are included in an asymmetric unit of the crystal. CCDC 741408 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Google Scholar 19G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112–122. 10.1107/S0108767307043930 CASPubMedGoogle Scholar 20A similar intermediate was also proposed for the nickel(0)-catalyzed [4+2] cycloaddition of dienynes. See, Ref. [14d]. Google Scholar 21Alternatively, a nickelacycle might be formed by the reaction of the alkyne or diene moiety of the dienyne with 1. We assume that the formation of 6 is more likely since this is a partially intramolecular reaction and the formation of [4+2] cycloadduct under closely related reaction conditions could be reasonably explained. Google Scholar 22P. Binger, M. J. Doyle, R. Benn, Chem. Ber. 1983, 116, 1–10. 10.1002/cber.19831160103 CASWeb of Science®Google Scholar 23The formation of the stereoisomers was occasionally observed in the closely related [3+2+2] cycloaddition reaction. In these reactions, the conformation of the nickelacycle would affect the configuration of the product. See Ref. [12a] and [12c]. Google Scholar 24For example, the conformation of the nickelacycle formed by the reaction of 2 j would be different from the nickelacycle prepared from 2 k owing to the presence of the bulky Boc group, and it would affect the outcome of the reaction. The electronic effect of the substituents might also influence the outcome of the reaction. Google Scholar Citing Literature Volume122, Issue10March 1, 2010Pages 1874-1877 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX