Artigo Revisado por pares

Membrane electrochemistry

1986; Elsevier BV; Volume: 23; Issue: 4 Linguagem: Inglês

10.1016/0079-6816(86)90016-x

ISSN

1878-4240

Autores

Paweł Krysiński,

Tópico(s)

Analytical Chemistry and Sensors

Resumo

Electrochemistry and biomembranes are interface science in that both are concerned with the phenomena at, as well as across, the interfaces. Membrane electrochemistry may be defined as the application of electrochemistry to biomembrane studies. Additionally, transport processes within the membrane are involved in biomembranes. Since biomembranes are diverse and are usually not amenable to probing by electrochemicophysical techniques, model membrane systems have been developed for their investigation. The introduction of experimental bilayer lipid membranes (BLM) technique and its modifications have been instrumental in the development and testing of membrane transport concepts (carriers vs channels) and electronic processes in membranes. Instead merely viewing a biomembrane as a physical barrier containing carriers or channels to carry out ionic processes, an ultrathin lipid or biological membrane can also be considered as a complete ‘electrochemical cell’ with one membrane/solution interface reducing (as a cathode) and the other membrane/solution interface oxidizing (as an anode). It is now possible to understand energy transduction (charge generation, separation, and redox reactions) in terms of ultrathin lipid membranes separating two aqueous solutions. In this paper, we shall discuss the basic principles of electrochemistry as they are applied to membrane studies. Emphasis will be on experimental bilayer lipid membranes (BLM) which have been extensively investigated as models of biomembranes.

Referência(s)
Altmetric
PlumX