A comparison of p53 and p16 expression in human tumor cells treated with hyperthermia or ionizing radiation
1997; Wiley; Volume: 72; Issue: 2 Linguagem: Inglês
10.1002/(sici)1097-0215(19970717)72
ISSN1097-0215
AutoresMarı́a Teresa Valenzuela, Marı́a Isabel Núñez, Mercedes Villalobos, Eva Siles, Trevor J. McMillan, Vicente Pedraza, José Mariano Ruiz de Almodóvar,
Tópico(s)Cancer-related Molecular Pathways
ResumoInternational Journal of CancerVolume 72, Issue 2 p. 307-312 Experimental CancerFree Access A comparison of p53 and p16 expression in human tumor cells treated with hyperthermia or ionizing radiation María Teresa Valenzuela, María Teresa Valenzuela Laboratorio de Investigaciones Médicas y Biología Tumoral, Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, Granada, SpainSearch for more papers by this authorMaría Isabel Núñez, María Isabel Núñez Laboratorio de Investigaciones Médicas y Biología Tumoral, Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, Granada, SpainSearch for more papers by this authorMercedes Villalobos, Mercedes Villalobos Laboratorio de Investigaciones Médicas y Biología Tumoral, Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, Granada, SpainSearch for more papers by this authorEva Siles, Eva Siles Laboratorio de Investigaciones Médicas y Biología Tumoral, Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, Granada, SpainSearch for more papers by this authorTrevor J. McMillan, Trevor J. McMillan Division of Biological Sciences, Institute of Environmental and Biological Sciences, Lancaster University, Lancaster, UKSearch for more papers by this authorVicente Pedraza, Vicente Pedraza Laboratorio de Investigaciones Médicas y Biología Tumoral, Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, Granada, SpainSearch for more papers by this authorJ. Mariano Ruiz de Almodóvar, Corresponding Author J. Mariano Ruiz de Almodóvar Laboratorio de Investigaciones Médicas y Biología Tumoral, Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, Granada, SpainDepartamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, 18071 Granada, Spain. Fax: 34 58 24 28 65Search for more papers by this author María Teresa Valenzuela, María Teresa Valenzuela Laboratorio de Investigaciones Médicas y Biología Tumoral, Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, Granada, SpainSearch for more papers by this authorMaría Isabel Núñez, María Isabel Núñez Laboratorio de Investigaciones Médicas y Biología Tumoral, Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, Granada, SpainSearch for more papers by this authorMercedes Villalobos, Mercedes Villalobos Laboratorio de Investigaciones Médicas y Biología Tumoral, Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, Granada, SpainSearch for more papers by this authorEva Siles, Eva Siles Laboratorio de Investigaciones Médicas y Biología Tumoral, Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, Granada, SpainSearch for more papers by this authorTrevor J. McMillan, Trevor J. McMillan Division of Biological Sciences, Institute of Environmental and Biological Sciences, Lancaster University, Lancaster, UKSearch for more papers by this authorVicente Pedraza, Vicente Pedraza Laboratorio de Investigaciones Médicas y Biología Tumoral, Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, Granada, SpainSearch for more papers by this authorJ. Mariano Ruiz de Almodóvar, Corresponding Author J. Mariano Ruiz de Almodóvar Laboratorio de Investigaciones Médicas y Biología Tumoral, Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, Granada, SpainDepartamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Granada, 18071 Granada, Spain. Fax: 34 58 24 28 65Search for more papers by this author First published: 06 December 1998 https://doi.org/10.1002/(SICI)1097-0215(19970717)72:2 3.0.CO;2-CCitations: 15AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract To assess the potential relationship between p53 and p16 proteins in the cellular response to stress, we have examined the levels of these proteins in a series of human tumor cell lines after treatment with either ionizing radiation or hyperthermia. We found that cells with abnormal radiation-induced G1 arrest (non-functional p53) had significantly higher constitutive levels of p16 than cells showing a normal G1 arrest (functional p53). Time-course experiments were done to test the effect of γ-irradiation on intracellular levels of p16. The pattern of changes in p16 response was similar in all cell lines studied, and p16 expression was not related to cellular sensitivity to radiation or to the level of p53 induction after treatment. We also provide evidence that short-term exposure to high temperature causes p53 accumulation. Hyperthermia-induced p53 accumulation was greatest in those cells exhibiting the highest radiation-induced p53 accumulation, suggesting a possible relationship between p53 induction after these 2 different stresses. p16 synthesis was also induced in different cell lines after heat treatment, and this response was independent of p53 functionality. When we compared the level of p16 expression with the extent of G0/G1 arrest induced by heat, a linear correlation was found, raising the possibility that p16 may be involved in the control of cell cycle progression in response to heat treatment. Int. J. Cancer 72:307–312, 1997. © 1997 Wiley-Liss, Inc. References Arap, W., Nishikawa, R., Furnari, F.B., Cavenee, W.K. and Su Huang, H.J., Replacement of the p16/CDKN2 gene suppresses human glioma cell growth. Cancer Res., 55, 1351–1354 (1995). CASPubMedWeb of Science®Google Scholar Graeber, T.G., Peterson, J.F., Tsai, M., Monica, K., Fornace, A.J. Jr. and Giaccia, A.J., Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol. cell. Biol., 14, 6264–6277 (1994). 10.1128/MCB.14.9.6264 CASPubMedWeb of Science®Google Scholar Graña, X. and Reddy, E.P., Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclins dependent kinase inhibitors (CDKIs). Oncogene, 11, 211–219 (1995). CASPubMedWeb of Science®Google Scholar Hainaut, P., Butcher, S. and Milner, J., Temperature sensitivity for conformation is an intrinsic property of wild-type p53. Brit. J. Cancer, 71, 227–231 (1995). 10.1038/bjc.1995.48 CASPubMedWeb of Science®Google Scholar Hartwell, L.H. and Kastan, M.B., Cell cycle control and cancer. Science, 266, 1821–1828 (1994). 10.1126/science.7997877 CASPubMedWeb of Science®Google Scholar Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B. and Craig, R.W., Participation of p53 protein in the cellular response to DNA damage. Cancer Res., 51, 6304–6311 (1991). CASPubMedWeb of Science®Google Scholar Kastan, M.B., Zhan, Q., El-Deiry, W.S., Carrier, F., Jacks, T., Walsh, W.V., Plunkett, B.S., Vogelstein, B. and Fornace, A.J. Jr., A mammalian cell cycle checkpoint pathway utilizing p53 and Gadd45 is defective in ataxia-telangiectasia. Cell, 71, 587–597 (1992). 10.1016/0092-8674(92)90593-2 CASPubMedWeb of Science®Google Scholar Khandjian, E.W., Heat treatment induces dephosphorylation of pRb and dissociation of T-antigen/pRb complex during transforming infection with SV40. Oncogene, 10, 359–367 (1995). CASPubMedWeb of Science®Google Scholar Kuerbitz, S.J., Plunkett, B.S., Walsh, W.V. and Kastan, M.B., Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. nat. Acad. Sci. (Wash.), 89, 7491–7495 (1992). 10.1073/pnas.89.16.7491 CASPubMedWeb of Science®Google Scholar Li, Y., Nichols, M.A., Shay, J.W. and Xiong, Y., Transcriptional repression of the D-type cyclin dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res., 54, 6078–6082 (1994). CASPubMedWeb of Science®Google Scholar Lu, X. and Lane, D.P., Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes. Cell, 75, 765–778 (1993). 10.1016/0092-8674(93)90496-D CASPubMedWeb of Science®Google Scholar Merritt, A.J., Potten, C.S., Kemp, J., Hickman, J.A., Balmain, A., Lane, D.P. and Hall, P.A., The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res., 54, 614–617 (1994). CASPubMedWeb of Science®Google Scholar Nagasawa, H., Keng, P., Harley, R., Dahlberg, W. and Little, J.B., Relationship between gamma ray-induced G2+M delay and cellular radiosensitivity. Int. J. Rad. Biol., 66, 373–379 (1994). 10.1080/09553009414551311 CASPubMedWeb of Science®Google Scholar Roti Roti, J.L., MacKey, M.A. and Higashikubo, R., The effects of heat shock on cell proliferation. Cell Prolif., 25, 89–99 (1992). 10.1111/j.1365-2184.1992.tb01483.x CASPubMedWeb of Science®Google Scholar Roti Roti, J.L. and Turkel, N., Heat-induced changes in nuclear-associated proteins in normal and thermotolerant HeLa cells. Rad. Res., 139, 73–81 (1994). 10.2307/3578735 CASPubMedWeb of Science®Google Scholar Serrano, M., Hannon, G.J. and Beach, D., A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/CDK 4. Nature (Lond.), 366, 704–707 (1993). 10.1038/366704a0 CASPubMedWeb of Science®Google Scholar Siles, E., Villalobos, M., Valenzuela, M.T., Núñez, M.I., Gordon, A., McMillan, T.J., Pedraza, V. and Ruiz De Almodóvar, J.M., Relationship between p53 status and radiosensitivity in human tumour cell lines. Brit. J. Cancer, 73, 581–588 (1996). 10.1038/bjc.1996.101 CASPubMedWeb of Science®Google Scholar Stewart, N., Hicks, G.G., Paraskevas, F. and Mowat, M., Evidence for a second cell cycle block at G2+M by p53. Oncogene, 10, 109–115 (1995). CASPubMedWeb of Science®Google Scholar Tam, S.W., Shay, J.W. and Pagano, M., Differential expression and cell cycle regulation of the cyclin dependent kinase 4 inhibitor p16INK4. Cancer Res., 54, 5816–5820 (1994). CASPubMedWeb of Science®Google Scholar Valenzuela, M.T., Núñez, M.I., Villalobos, M., Siles, E., Olea, N., McMillan, T.J., Pedraza, V. and Ruiz De Almodóvar, J.M., Relationship between doxorubicin cell sensitivity, drug induced DNA double strand breaks, glutathione content and P-glycoprotein in mammalian tumour cells. Anti-Cancer Drugs, 6, 749–757 (1995). 10.1097/00001813-199512000-00006 CASPubMedWeb of Science®Google Scholar Xiong, Y., Hannon, G.J., Zhang, H., Casso, D., Kobayashi, R. and Beach, D., p21 is a universal inhibitor of cyclin kinases. Nature (Lond.), 366, 701–704 (1993a). 10.1038/366701a0 CASPubMedWeb of Science®Google Scholar Xiong, Y., Zhang, H. and Beach, D., Subunit rearrangement of the cyclin dependent kinases is associated with cellular transformation. Genes Develop., 7, 1572–1583 (1993b). 10.1101/gad.7.8.1572 CASPubMedWeb of Science®Google Scholar Citing Literature Volume72, Issue217 July 1997Pages 307-312 ReferencesRelatedInformation
Referência(s)