Effects of chronic hypobaric hypoxia on blood oxygen binding in pigeons
1997; Wiley; Volume: 277; Issue: 4 Linguagem: Inglês
10.1002/(sici)1097-010x(19970301)277
ISSN1097-010X
AutoresLeigh A. Maginniss, Marvin H. Bernstein, Mark A. Deitch, Berry Pinshow,
Tópico(s)Cardiovascular Disease and Adiposity
ResumoJournal of Experimental ZoologyVolume 277, Issue 4 p. 293-300 Comparative Physiology and BiochemistryFull Access Effects of chronic hypobaric hypoxia on blood oxygen binding in pigeons Leigh A. Maginniss, Corresponding Author Leigh A. Maginniss Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912Department of Biological Sciences, DePaul University, 1036 West Belden Avenue, Chicago, IL 60614===Search for more papers by this authorMarvin H. Bernstein, Marvin H. Bernstein Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003Search for more papers by this authorMark A. Deitch, Mark A. Deitch Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912Search for more papers by this authorBerry Pinshow, Berry Pinshow Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003Search for more papers by this author Leigh A. Maginniss, Corresponding Author Leigh A. Maginniss Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912Department of Biological Sciences, DePaul University, 1036 West Belden Avenue, Chicago, IL 60614===Search for more papers by this authorMarvin H. Bernstein, Marvin H. Bernstein Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003Search for more papers by this authorMark A. Deitch, Mark A. Deitch Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912Search for more papers by this authorBerry Pinshow, Berry Pinshow Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003Search for more papers by this author First published: 07 December 1998 https://doi.org/10.1002/(SICI)1097-010X(19970301)277:4 3.0.CO;2-KCitations: 13AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Effects of chronic hypobaric hypoxia on blood O2 transport were studied using two groups of domestic pigeons (Columba livia). High-altitude (HA) birds were acclimated for 6 wk at 7 km simulated altitude (308 Torr, 25°C); sea-level (SL) pigeons were maintained for 5–6 wk at 758 Torr (25°C). Whole blood O2 equilibrium curves (O2ECs) were generated for HA and SL pigeons at 37°C and 41°C using thin film techniques. At pH 7.50 and 41°C, half-saturation PO2s (P50) for HA and SL birds were 32.9 ± 1.4 (6); (mean ± S.E.M. [N]) and 35.6 ± 0.6 (6) Torr, respectively. At pH 7.56 and 37°C, the corresponding P50s were 26.5 ± 1.8 (4) and 29.0 ± 0.6 (5) Torr, respectively. HA and SL pigeons exhibited similar Hb-O2 temperature coefficients (ΔH = −9.8 to −10.6 kcal/mole O2) and CO2 (Bohr slopes (Δlog P50/ΔpH = −.43 to −.44 at 37°C; −.41 at 41°C). Hill's n increased with increasing saturation for both animal groups at 37°C and 41°C. Hypoxic acclimation elicited a significant increase in O2 capacity; %Hct and [Hb] increased by 38% and 43%, respectively. Chronic hypoxia had no effect on isohemoglobin composition; both groups exhibited two isoHb fractions in a 9:1 molar ratio. At PaO2 = 30 Torr, calculated in vivo CaO2 for HA (39.2°C, pH 7.53) and SL (41°C, pH 7.50) birds were 14.2 vol % and 7.6 vol %, respectively. Results suggest that altitude tolerance of pigeons is enhanced by the increased blood O2 capacity and the effect of hypoxia-induced hypothermia on Hb-O2 affinity. J. Exp. Zool. 277:293–300, 1997. © 1997 Wiley-Liss, Inc. Literature Cited Baumann, F. H., and R. Baumann (1977) A comparative study of the respiratory properties of bird blood. Respir. Physiol., 31: 333–343. 10.1016/0034-5687(77)90076-7 CASPubMedWeb of Science®Google Scholar Bernstein, M. H. (1989) Respiration by birds at high altitude and in flight. In: Physiology of Cold Adaptation in Birds. C. Bech and R. E. Reinertsen, eds. Plenum, New York, pp. 197–206. 10.1007/978-1-4757-0031-2_21 Google Scholar Besch, E. L., R. R., Burton, and A. H. Smith (1971) Influence of chronic hypoxia on blood gas tensions and pH in domestic fowl. Am. J. Physiol., 220: 1379–1382. CASPubMedWeb of Science®Google Scholar Black, C. P., and S. M. Tenney (1980) Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl. Respir. Physiol., 39: 217–239. 10.1016/0034-5687(80)90046-8 CASPubMedWeb of Science®Google Scholar Bouverot, P. (1985) Adaptations to Altitude-Hypoxia in Vertebrates. Springer-Verlag, New York. 10.1007/978-3-642-82316-9 Web of Science®Google Scholar Bouverot, P., G., Hildwein, and P. H. Oulhen (1976) Ventilatory and circulatory O2 convection at 4000 m in pigeon at neutral or cold temperature. Respir. Physiol., 28: 371–385. 10.1016/0034-5687(76)90031-1 CASPubMedWeb of Science®Google Scholar Bullard, R. W. (1972) Vertebrates at altitudes. In: Physiological Adaptations: Desert and Mountain. M. Y. Yousef, S. M. Horvath, and R. W. Bullard, eds. Academic Press, New York, pp. 209–225. 10.1016/B978-0-12-774650-0.50021-5 Google Scholar Butler, P. J., N. H., West, and D. R. Jones (1977) Respiratory and cardiovascular responses of the pigeon to sustained, level flight in a wind-tunnel. J. Exp. Biol., 71: 7–26. 10.1242/jeb.71.1.7 Web of Science®Google Scholar Calder, W. A., and J. R. King (1974) Thermal and caloric relations of birds. In: Avian Biology, Vol. 4. D. S. Farmer and J. R. King, eds. Academic Press, New York, pp. 259–413. Google Scholar Chiodi, H. (1970/71) Comparative study of the blood gas transport in high altitude and sea level camelidae and goats. Respir. Physiol., 11: 84–93. 10.1016/0034-5687(70)90104-0 CASPubMedGoogle Scholar Clemens, D. T. (1990) Interspecific variation and effects of altitude on blood properties of rosy finches (Leucosticte arctoa) and house finches (Carpodacus mexicanus). Physiol. Zool., 63: 288–307. 10.1086/physzool.63.2.30158498 Web of Science®Google Scholar Colacino, J. M., D. H., Hector, and K. Schmidt-Nielsen (1977) Respiratory responses of ducks to simulated altitude. Respir. Physiol., 29: 265–281. 10.1016/0034-5687(77)90003-2 CASPubMedWeb of Science®Google Scholar Dawson, W. R., R. L., Marsh, and M. E. Yacoe (1983) Metabolic adjustments of small passerine birds for migration and cold. Am. J. Physiol., 245: R755–R767. CASPubMedWeb of Science®Google Scholar Drysdale, J. W., P., Righetti, and H. F. Bunn (1971) The separation of human and animal hemoglobins by isoelectric focusing in polyacrylamide gel. Biochim. Biophys. Acta 229: 42–50. 10.1016/0005-2795(71)90315-1 CASPubMedWeb of Science®Google Scholar Faraci, F. M. (1991) Adaptations to hypoxia in birds: how to fly high. Ann. Rev. Physiol., 53: 59–70. 10.1146/annurev.ph.53.030191.000423 CASPubMedWeb of Science®Google Scholar Girard, F., J., Kister, B. Bohn, and C. Poyart (1987) Functional properties of hemoglobin in human red cells. I. Oxygen equilibrium curves and DPG binding. Respir. Physiol., 68: 227–238. 10.1016/S0034-5687(87)80008-7 CASPubMedWeb of Science®Google Scholar Gonzalez, N. C., L. P., Erwig, C. F. Painter, R. L. Clancy, and P. D. Wagner (1994) Effect of hematocrit on systemic O2 transport in hypoxic and normoxic exercise in rats. J. Appl. Physiol., 77: 1341–1348. CASPubMedWeb of Science®Google Scholar Hall, F. G., D. B., Dill, and E. S. G. Barron (1936) Comparative physiology in high altitudes. J. Cell. Comp. Physiol., 8: 301–313. 10.1002/jcp.1030080302 CASWeb of Science®Google Scholar Hirsowitz, L. A., K., Fell, and J. D. Torrance (1977) Oxygen affinity of avian blood. Respir. Physiol., 31: 51–62. 10.1016/0034-5687(77)90064-0 CASPubMedWeb of Science®Google Scholar Jaeger, J. J., and J. J. McGrath (1974) Hematologic and biochemical effects of simulated high altitude on the Japanese quail. J. Appl. Physiol., 37: 357–361. 10.1152/jappl.1974.37.3.357 CASPubMedWeb of Science®Google Scholar Johansen, K., M., Berger, J. E. P. W. Bicudo, A. Ruschi, and P. J. De Almeida (1987) Respiratory properties of blood and myoglobin in hummingbirds. Physiol. Zool., 60: 269–278. 10.1086/physzool.60.2.30158651 Web of Science®Google Scholar Lapennas, G. N., and R. B. Reeves (1983) Oxygen affinity of blood of adult domestic chicken and red jungle fowl. Respir. Physiol., 52: 27–39. 10.1016/0034-5687(83)90134-2 CASPubMedWeb of Science®Google Scholar Lutz, P. L., and K. Schmidt-Nielsen (1977) Effect of simulated altitude on blood gas transport in the pigeon. Respir. Physiol., 30: 383–388. 10.1016/0034-5687(77)90043-3 CASPubMedWeb of Science®Google Scholar Lutz, P. L., I. S., Longmuir, J. V. Tuttle, and K. Schmidt-Nielsen (1973) Dissociation curve of bird blood and effect of red cell oxygen consumption. Respir. Physiol., 17: 269–275. 10.1016/0034-5687(73)90001-7 CASPubMedWeb of Science®Google Scholar Maginniss, L. A. (1985) Blood oxygen transport in the house sparrow, Passer domesticus. J. Comp. Physiol., B155: 277–283. 10.1007/BF00687468 Web of Science®Google Scholar Maginniss, L. A., and D. L. Kilgore (1989) Blood oxygen binding properties for the burrowing owl, Athene cunicularia. Respir. Physiol., 76: 205–214. 10.1016/0034-5687(89)90098-4 CASPubMedWeb of Science®Google Scholar McGrath, J. J. (1971) Acclimation response of pigeons to simulated high altitude. J. Appl. Physiol., 31: 274–276. CASPubMedWeb of Science®Google Scholar Petschow, D., I., Wurdinger, R. Baumann, J. Duhm, G. Braunitzer, and C. Bauer (1977) Causes of high blood O2 affinity of animals living at high altitude. J. Appl. Physiol., 42: 139–143. CASPubMedWeb of Science®Google Scholar Piiper, J., and P. Scheid (1975) Gas transport efficacy of gills, lungs and skin: Theory and experimental data. Respir. Physiol., 23: 209–221. 10.1016/0034-5687(75)90061-4 CASPubMedWeb of Science®Google Scholar Pionetti, J. M., and P. Bouverot (1977) Effects of acclimation to altitude on oxygen affinity and organic phosphate concentrations in pigeon blood. Life Sci., 20: 1207–1212. 10.1016/0024-3205(77)90494-5 CASPubMedWeb of Science®Google Scholar Reeves, R. B. (1976) Temperature-induced changes in blood acid-base status: pH and PCO2 in a binary buffer. J. Appl. Physiol., 40: 752–761. CASPubMedWeb of Science®Google Scholar Reeves, R. B. (1984) Oxygen equilibrium curves of whole blood determined by micro dynamic thin-film technique. In: Techniques in Respiratory Physiology. A. Otis, ed. Elsevier, Ireland, pp. 1–30 Google Scholar Reeves, R. B., J. S., Park, G. N. Lapennas, and A. J. Olszowska (1982) Oxygen affinity and Bohr coefficients of dog blood. J. Appl. Physiol., 53: 87–95. 10.1152/jappl.1982.53.1.87 CASPubMedWeb of Science®Google Scholar Severinghaus, J. W. (1979) Simple, accurate equations for human blood O2 dissociation computations. J. Appl. Physiol., 46: 599–602. 10.1152/jappl.1979.46.3.599 CASPubMedWeb of Science®Google Scholar Schneks, A. G., C., Paul, and C. Vandecasserie (1978) Respiratory proteins in birds. In: Chemical Zoology, Vol. 10. M. Florkin and B. T. Scheer, eds. Academic Press, New York, pp. 359–381. Google Scholar Schumacker, P. T., B., Guth, A. J. Suggett, P. D. Wagner, and J. B. West (1985) Effects of transfusion-induced polycythemia on O2 transport during exercise in the dog. J. Appl. Physiol., 58: 749–758. CASPubMedWeb of Science®Google Scholar Siggaard-Anderson, O., and K. Engel (1960) A new acid-base nomogram. An improved method for the calculation of the relevant blood acid-base data. Scand. J. Clin. Lab. Invest., 12: 177–186. 10.3109/00365516009062420 CASPubMedWeb of Science®Google Scholar Tucker, V. A. (1968) Respiratory physiology of house sparrows in relation to high-altitude flight. J. Exp. Biol., 48: 55–66. PubMedWeb of Science®Google Scholar van Assendelft, O. W. (1970) Spectrophotometry of Haemoglobin Derivatives. Van Gorcum, Assen, The Netherlands. Vorger, P. (1994) Oxygen binding properties of blood and hemoglobin from the pigeon Columba livia. Comp. Biochem. Physiol., 109B: 391–406. Google Scholar Weathers, W. W., and G. K. Snyder (1974) Functional acclimation of Japanese quail to simulated high-altitude. J. Comp. Physiol., 93: 127–137. 10.1007/BF00696267 CASWeb of Science®Google Scholar Weinstein, Y., M. H., Bernstein, P. E. Bickler, D. V. Gonzales, F. C. Samaniego, and M. A. Escobedo (1985) Blood respiratory properties in pigeons at high altitudes: Effects of acclimation. Am. J. Physiol., 249: R765–R775. CASPubMedWeb of Science®Google Scholar Williams, T. C., J. M., Williams, L. C. Ireland, and J. M. Teal (1977) Autumnal bird migration over the western North Atlantic Ocean. Am. Birds, 31: 251–267. Google Scholar Citing Literature Volume277, Issue41 March 1997Pages 293-300 ReferencesRelatedInformation
Referência(s)