Artigo Revisado por pares

Fungal endophyte infection changes growth attributes in Lolium multiflorum Lam

2008; Wiley; Volume: 30; Issue: 1 Linguagem: Inglês

10.1111/j.1442-9993.2005.tb00365.x

ISSN

1442-9993

Autores

Martín M. Vila‐Aiub, Pedro E. Gundel, Claudio M. Ghersa,

Tópico(s)

Plant tissue culture and regeneration

Resumo

Austral EcologyVolume 30, Issue 1 p. 49-57 Fungal endophyte infection changes growth attributes in Lolium multiflorum Lam Martin M. Vila-Aiub, Corresponding Author Martin M. Vila-Aiub Corresponding author. Present address: Western Australian Herbicide Resistance Initiative (WAHRI)- School of Plant Biology- Faculty of Natural and Agricultural Sciences- The University of Western Australia (UWA), 35 Stirling Hwy, Crawley, WA 6009, Australia (Email: [email protected])Search for more papers by this authorPedro E. Gundel, Pedro E. Gundel IFEVA, Departamento de Recursos Naturales y Ambiente. Facultad de Agronomia, Universidad de Buenos Aires (UBA). Avenue. San Martin 4453, C1417DSE, Buenos Aires, ArgentinaSearch for more papers by this authorClaudio M. Ghersa, Claudio M. Ghersa IFEVA, Departamento de Recursos Naturales y Ambiente. Facultad de Agronomia, Universidad de Buenos Aires (UBA). Avenue. San Martin 4453, C1417DSE, Buenos Aires, ArgentinaSearch for more papers by this author Martin M. Vila-Aiub, Corresponding Author Martin M. Vila-Aiub Corresponding author. Present address: Western Australian Herbicide Resistance Initiative (WAHRI)- School of Plant Biology- Faculty of Natural and Agricultural Sciences- The University of Western Australia (UWA), 35 Stirling Hwy, Crawley, WA 6009, Australia (Email: [email protected])Search for more papers by this authorPedro E. Gundel, Pedro E. Gundel IFEVA, Departamento de Recursos Naturales y Ambiente. Facultad de Agronomia, Universidad de Buenos Aires (UBA). Avenue. San Martin 4453, C1417DSE, Buenos Aires, ArgentinaSearch for more papers by this authorClaudio M. Ghersa, Claudio M. Ghersa IFEVA, Departamento de Recursos Naturales y Ambiente. Facultad de Agronomia, Universidad de Buenos Aires (UBA). Avenue. San Martin 4453, C1417DSE, Buenos Aires, ArgentinaSearch for more papers by this author First published: 28 June 2008 https://doi.org/10.1111/j.1442-9993.2005.01423.xCitations: 29Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Abstract Lolium multiflorum is a successful invader of postagricultural succession in the Inland Pampa grasslands in Argentina, becoming a dominant species in the plant community. Individual plants of this annual species are naturally highly infected with fungal endophytes (Neotyphodium sp.) from early successional stages. We assessed the effect of Neotyphodium infection on the biology of L. multiflorum. We evaluated growth attributes between endophyte infected (E+) and uninfected (E–) plants under non-competitive conditions during the normal growing season. E+ plants produced significantly more vegetative tillers and allocated more biomass to roots and seeds. Although seed germination rates were greater in endophyte free plants, the rate of emergence and the final proportion of emerged seedlings were similar between the biotypes. The greater production of vegetative tillers, and the greater resource allocation to roots and seeds are likely to confer an ecological advantage to E+ plants, thus enabling their dominance over the E– individuals in natural grasslands. REFERENCES Ahmed A., Nelson T. A., Daniels L. B., Piper E. L., Beasley J. N. (1982) Fescue toxicosis: progress toward identification of its cause. Arkansas Res. 32, 7. Google Scholar Berendse F. & Elberse W. T. (1990) Competition and nutrient availability in heathland and grassland ecosystems. In: Perspectives on Plant Competition (eds J. B. Grace & D. Tilman) pp. 93–116. Academic Press, San Diego. 10.1016/B978-0-12-294452-9.50010-2 Google Scholar Chaneton E. J., Facelli J. M., León R. J. C. (1992) Role of litter accumulation and seed availability in an early succession replacement sequence. Bull. Ecol. Soc. Am. 73, 136. Google Scholar Cheplick G. P., Clay K., Marks S. (1989) Interactions between infection by endophytic fungi and nutrient limitation in the grasses Lolium perenne and Festuca arundinacea. New Phytol. 111, 89–97. 10.1111/j.1469-8137.1989.tb04222.x Web of Science®Google Scholar Clay K. (1987) Effects of fungal endophytes on the seed and seedling biology of Lolium perenne and Festuca arundinacea. Oecologia 73, 358–62. 10.1007/BF00385251 CASPubMedWeb of Science®Google Scholar Clay K. (1993) The ecology and evolution of endophytes. Agric. Ecosyst. Environ. 44, 39–64. 10.1016/0167-8809(93)90038-Q Web of Science®Google Scholar Clay K. & Holah J. (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285, 1742–4. 10.1126/science.285.5434.1742 CASPubMedWeb of Science®Google Scholar Clay K. & Schardl C. (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am. Nat. 160, 99–127. 10.1086/342161 PubMedWeb of Science®Google Scholar D'angela E., León R. J. C., Facelli J. M. (1986) Pioneer stages in a secondary succession of a pampean subhumid grassland. Flora 178, 261–70. 10.1016/S0367-2530(17)31505-0 Google Scholar De Battista J. P., Bacon C. W., Severson R., Plattner R. D., Bouton J. H. (1990) Indole acetic acid production by the fungal endophyte of tall fescue. Agron. J. 82, 878–80. 10.2134/agronj1990.00021962008200050006x CASWeb of Science®Google Scholar Elmi A. A. & West C. P. (1995) Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytol. 131, 61–7. 10.1111/j.1469-8137.1995.tb03055.x CASPubMedWeb of Science®Google Scholar Facelli J. M. & D'angela E. (1990) Directionality, convergence, and rate of change during early succession in the Inland Pampa. J. Veg. Sci. 1, 255–60. 10.2307/3235662 Web of Science®Google Scholar Facelli J. M., D'angela E., León R. J. C. (1987) Diversity changes during pioneer stages in a subhumid pampean grassland succesion. Am. Midl. Nat. 117, 17–25. 10.2307/2425703 Web of Science®Google Scholar Firbank L. G. & Watkinson A. R. (1990) On the effects of competition: from monocultures to mixtures. In: Perspectives on Plant Competition (eds J. B. Grace & D. Tilman) pp. 165–92. Academic Press, San Diego. 10.1016/B978-0-12-294452-9.50013-8 Google Scholar Forcella F., Benech Arnold R. L., Sanchez R., Ghersa C. M. (2000) Modeling seedling emergence. Field Crops Res. 67, 123–39.DOI: 10.1016/S0378-4290(00)00088-5 10.1016/S0378‐4290(00)00088‐5 Web of Science®Google Scholar Francis S. M. & Baird D. B. (1989) Increase in the proportion of endophyte-infected perennial ryegrass plants in overdrilled pastures. NZ J. Agric. Res. 32, 437–40. 10.1080/00288233.1989.10421764 Web of Science®Google Scholar Glenn A. E., Bacon C. W., Price R., Hanlin R. T. (1996) Molecular phylogeny of Acremonium and its taxonomic implications. Mycologia 88, 369–83. 10.2307/3760878 CASWeb of Science®Google Scholar Grime J. P. (1979) Plant Strategies and Vegetation Processes. John Wiley & Sons, Chichester. PubMedGoogle Scholar Grime J. P. (1994) The role of plasticity in exploiting environmental heterogeneity. In: Exploitation of Environmental Heterogeneity by Plants. Ecophysiological Processes Above and Below Ground (eds M. M. Caldwell & R. W. Pearcy) pp. 1–19. Academic Press, San Diego. 10.1016/B978-0-12-155070-7.50006-8 Google Scholar Grime J. P. & Hunt R. (1975) Relative growth rate: its range and adaptive significance in a local flora. J. Ecol. 63, 393–422. 10.2307/2258728 Web of Science®Google Scholar Harper J. L. (1977) Population Biology of Plants. Academic Press, London. CASPubMedGoogle Scholar Hill N. S., Stringer W. C., Rottinghaus G. E., Belesky D. P., Parrot W. A., Pope D. D. (1990) Growth, morphological, and chemical component responses of tall fescue to Acremonium coenophialum. Crop Sci. 30, 156–61. 10.2135/cropsci1990.0011183X003000010034x Web of Science®Google Scholar Hoffmann W. A. & Poorter H. (2002) Avoiding bias in calculations of relative growth rate. Ann. Bot. 80, 37–42.DOI: 10.1093/aob/mcf140 10.1093/aob/mcf140 Web of Science®Google Scholar Jakobsson A. & Eriksson O. (2000) A comparative study of seed number, seed size, seedling size and recruitment in grasslands plants. Oikos 88, 494–502.DOI: 10.1034/j.1600-0706.2000.880304.x 10.1034/j.1600-0706.2000.880304.x Web of Science®Google Scholar Latch G. C. M., Christensen M. J., Hickson R. E. (1988) Endophytes of annual and hybrid ryegrasses. NZ J. Agric. Res. 31, 57–63. 10.1080/00288233.1988.10421364 Web of Science®Google Scholar Latch G. C. M., Hunt W. F., Musgrave D. R. (1985) Endophytic fungi affect growth of perennial ryegrass. N. Z. J. Agric. Res. 28, 165–8. 10.1080/00288233.1985.10427011 Web of Science®Google Scholar Latch G. C. M., Potter L. R., Tyler B. F. (1987) Incidence of endophytes in seeds from collections of Lolium and Festuca species. Ann. Appl. Biol. 111, 59–64. 10.1111/j.1744-7348.1987.tb01433.x Web of Science®Google Scholar Lyons P. C., Evans J. J., Bacon C. W. (1990) Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue. Plant Physiol. 92, 726–32. 10.1104/pp.92.3.726 CASPubMedWeb of Science®Google Scholar Mahmood T., Gergerich R. C., Milus E. A., West C. P., D'Arcy C. J. (1993) Barley yellow dwarf viruses in wheat, endophyte-infected and endophyte-free tall fescue, and other hosts in Arkansas. Plant Dis. 77, 225–8. 10.1094/PD-77-0225 Web of Science®Google Scholar Malinowski D. P. & Belesky D. P. (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci. 40, 923–40. 10.2135/cropsci2000.404923x CASWeb of Science®Google Scholar Malinowski D. P., Belesky D. P., Hill N. S., Baligar V. C., Fedders J. M. (1998) Influence of phosphorus on the growth and ergot alkaloid content of Neotyphodium coenophialum-infected tall fescue (Festuca arundinacea Schreb). Plant Soil 198, 53–61.DOI: 10.1023/A:1004279401196 10.1023/A:1004279401196 CASWeb of Science®Google Scholar Marks S. & Clay K (1996) Physiological responses of Festuca arundinacea to fungal endophyte infection. New Phytol. 133, 727–33. 10.1111/j.1469-8137.1996.tb01941.x Web of Science®Google Scholar Maseda P., Gundel P., Vila-Aiub M. M., Bench Arnold R. (2001) Incidencia del endofito Neotyphodium en la dinámica de la germinación de Lolium multiflorum L. In: Proceedings of 1ra Reunión Binacional de Ecología 2001 (eds XX Reunión Argentina de Ecología y X Reunión de la Sociedad de Ecología de Chile). San Carlos de Bariloche, Argentina. Google Scholar Omacini M., Chaneton E. J., Ghersa C. M., Müller C. B. (2001) Symbiotic fungal endophytes impact on insect host–parasite interaction webs. Nature 409, 78–81. 10.1038/35051070 CASPubMedWeb of Science®Google Scholar Omacini M., Chaneton E. J., León R. J. C., Batista W. B. (1995) Old-field successional dynamics on the Inland pampa, Argentina. J. Veg. Sci. 6, 309–16. 10.2307/3236229 Web of Science®Google Scholar Porter J. K. (1994) Chemical constituents of grass endophytes. In: Biotechnology of Endophytic Fungi of Grasses (eds C. W. Bacon & J. F. White) pp. 103–23. CRC Press, Florida. Web of Science®Google Scholar Prestidge R. A., Pottinger R., Barket G. (1982) An association of Lolium endophyte with ryegrass resistance to Argentine stem weevil. In: Proceedings of the 35th New Zealand Weed Pest Control Conference. pp. 119–22. The New Zealand Plant Protection Society, Palmerston North. Google Scholar Rayle D. L. & Cleland R. E. (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol. 99, 1271–4. 10.1104/pp.99.4.1271 CASPubMedWeb of Science®Google Scholar Rodriguez A. M., Jacobo E. J., Deregibus V. A. (1998) Germination behaviour of Italian ryegrass in flooding pampa rangelands. Seed Sci. Res. 8, 521–8. 10.1017/S0960258500004499 Web of Science®Google Scholar Soriano A., León R. J. C., Sala O. E. et al. (1991) Rio de la Plata grasslands. In: Ecosystems of the World 8A. Natural Grasslands. Introduction and Western Hemisphere (ed. R. T. Coupland) pp. 367–407. Elsevier, Amsterdan. Google Scholar Springer T. L. (1996) Allelopathic effects on germination and seedling growth of clovers by endophyte-free and infected tall fescue. Crop Sci. 36, 1639–42. 10.2135/cropsci1996.0011183X003600060037x Web of Science®Google Scholar Venus J. C. & Causton D. R. (1979) Plant growth analysis: a re-examination of the methods of calculation of relative rate growth and net assimilation rates without using fitted functions. Ann. Bot. 43, 633–8. 10.1093/oxfordjournals.aob.a085674 Web of Science®Google Scholar Vila-Aiub M. M., Ghersa C. M., Chaneton E. J. (1997) Dinámica de infección de hongos endofíticos a través de la sucesión secundaria post-agrícola. In: Proceedings of the XVIII Reunión Argentina de Ecología. p. 129. Asociación Argentina de Ecología, Buenos Aires. Google Scholar Von Ende C. N. (2001) Repeated-measures analysis. In: Designs and Analysis of Ecological Experiments (eds S. M. Scheiner & J. Gurevitch) pp. 134–57. Oxford University Press, New York. Google Scholar West C. P., Izekor E., Oosterhuis D. M., Robbins R. T. (1988) The effect of Acremonium coenophialum on the growth and nematode infestation of tall fescue. Plant Soil 112, 3–6. 10.1007/BF02181745 Web of Science®Google Scholar West C. P., Izekor E., Turner K. E., Elmi A. A. (1993) Endophyte effects on growth and persistence of tall fescue along a water-supply gradient. Agron. J. 85, 264–70. 10.2134/agronj1993.00021962008500020019x Web of Science®Google Scholar Citing Literature Volume30, Issue1February 2005Pages 49-57 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX