Artigo Revisado por pares

The Origins of Dramatic Axial Ligand Effects: Closed‐Shell Mn V O Complexes Use Exchange‐Enhanced Open‐Shell States to Mediate Efficient H Abstraction Reactions

2012; Wiley; Volume: 124; Issue: 18 Linguagem: Inglês

10.1002/ange.201200689

ISSN

1521-3757

Autores

Deepa Janardanan, Dandamudi Usharani, Sason Shaik,

Tópico(s)

Magnetism in coordination complexes

Resumo

Angewandte ChemieVolume 124, Issue 18 p. 4497-4501 Zuschrift The Origins of Dramatic Axial Ligand Effects: Closed-Shell MnVO Complexes Use Exchange-Enhanced Open-Shell States to Mediate Efficient H Abstraction Reactions† Dr. Deepa Janardanan, Dr. Deepa Janardanan Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University, Jerusalem, 91904 (Israel)Search for more papers by this authorDr. Dandamudi Usharani, Dr. Dandamudi Usharani Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University, Jerusalem, 91904 (Israel)Search for more papers by this authorProf. Dr. Sason Shaik, Corresponding Author Prof. Dr. Sason Shaik [email protected] Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University, Jerusalem, 91904 (Israel)Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University, Jerusalem, 91904 (Israel)Search for more papers by this author Dr. Deepa Janardanan, Dr. Deepa Janardanan Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University, Jerusalem, 91904 (Israel)Search for more papers by this authorDr. Dandamudi Usharani, Dr. Dandamudi Usharani Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University, Jerusalem, 91904 (Israel)Search for more papers by this authorProf. Dr. Sason Shaik, Corresponding Author Prof. Dr. Sason Shaik [email protected] Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University, Jerusalem, 91904 (Israel)Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University, Jerusalem, 91904 (Israel)Search for more papers by this author First published: 21 March 2012 https://doi.org/10.1002/ange.201200689Citations: 6 † Support by Minerva is thanked. Prof. H. Schwarz is thanked for pointing out the closed–open issue and reading the paper. Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Spinzustandseffekte: Trotz geschlossenschaliger Singulett-Grundzustände ist in [(Cz)MnVO]-Komplexen der reaktive Zustand ein offenschaliges B-Triplett (SB=1), das hohen Oxyl-Radikalcharakter hat und einen durch austauschverstärkte Reaktivität (EER) stabilisierten Übergangszustand (TS) aufweist (siehe Bild). Der drastische axiale Ligandeneffekt hat seine Ursache in der EER dieses Zustands. Supporting Information Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Filename Description ange_201200689_sm_miscellaneous_information.pdf3.9 MB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1 1aThe ground state of MnIV complexes is generally S=3/2. See discussion in: R. S. Czernuszewicz, Y. O. Su, M. K. Stern, K. A. Macor, D. Kim, J. T. Groves, T. G. Spiro, J. Am. Chem. Soc. 1988, 110, 4158–4165; 10.1021/ja00221a010 CASWeb of Science®Google Scholar 1bM. F. Ryan, A. Fiedler, D. Schröder, H. Schwarz, J. Am. Chem. Soc. 1995, 117, 2033–2040; 10.1021/ja00112a017 CASWeb of Science®Google Scholar 1cN. Jin, J. T. Groves, J. Am. Chem. Soc. 1999, 121, 2923–2924; 10.1021/ja984429q CASWeb of Science®Google Scholar 1dD. Balcells, C. Raynaud, R. H. Crabtree, O. Eisenstein, Chem. Commun. 2009, 1772–1774; 10.1039/b821029b CASPubMedWeb of Science®Google Scholar 1eW. Liu, J. T. Groves, J. Am. Chem. Soc. 2010, 132, 12847–12849; 10.1021/ja105548x CASPubMedWeb of Science®Google Scholar 1fX. Wu, M. S. Seo, K. M. Davis, Y.-M. Lee, J. Chen, K.-B. Cho, Y. N. Pushkar, W. Nam, J. Am. Chem. Soc. 2011, 133, 20088–20091. 10.1021/ja208523u CASPubMedWeb of Science®Google Scholar 2aJ. P. McEvoy, G. W. Brudvig, Chem. Rev. 2006, 106, 4455–4483; 10.1021/cr0204294 CASPubMedWeb of Science®Google Scholar 2bA. Mahammed, Z. Gross, Angew. Chem. 2006, 118, 6694–6697; 10.1002/ange.200601399 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 6544–6547; 10.1002/anie.200601399 CASPubMedWeb of Science®Google Scholar 2cZ. Okun, L. Kupershmidt, T. Amit, S. Mandel, O. Bar-Am, M. B. H. Youdim, Z. Gross, ACS Chem. Biol. 2009, 4, 910–914. 10.1021/cb900159n CASPubMedWeb of Science®Google Scholar 3 3aF. De Angelis, N. Jin, R. Car, J. T. Groves, Inorg. Chem. 2006, 45, 4268–4276; 10.1021/ic060306s CASPubMedWeb of Science®Google Scholar 3bD. Balcells, C. Raynaud, R. H. Crabtree, O. Eisenstein, Inorg. Chem. 2008, 47, 10090–10099; 10.1021/ic8013706 CASPubMedWeb of Science®Google Scholar 3cD. Balcells, C. Raynaud, R. H. Crabtree, O. Eisenstein, Chem. Commun. 2008, 744–746. 10.1039/B715939K CASPubMedWeb of Science®Google Scholar 4 4aN. Dietl, M. Engeser, H. Schwarz, Angew. Chem. 2009, 121, 4955–4957; 10.1002/ange.200901596 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 4861–4863; 10.1002/anie.200901596 CASPubMedWeb of Science®Google Scholar 4bD. Schröder, J. Roithová, Angew. Chem. 2006, 118, 5835–5838; 10.1002/ange.200601273 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 5705–5708; 10.1002/anie.200601273 CASPubMedWeb of Science®Google Scholar 4cE. I. Solomon, S. D. Wong, L. V. Liu, A. Becker, M. S. Chow, Curr. Opin. Chem. Biol. 2009, 13, 99–113; 10.1016/j.cbpa.2009.02.011 CASPubMedWeb of Science®Google Scholar 4dS. Ye, F. Neese, Proc. Natl. Acad. Sci. USA 2011, 108, 1228–1233; 10.1073/pnas.1008411108 CASPubMedWeb of Science®Google Scholar 4eN. Dietl, M. Schlangen, H. Schwarz, Angew. Chem. 2012, 124, DOI: ; Angew. Chem. Int. Ed. 2012, 51, DOI: . Google Scholar 5 5aD. E. Lansky, B. Mandimutsira, B. Ramdhanie, M. Clausén, J. Penner-Hahn, S. A. Zvyagin, J. Telser, J. Krzystek, R. Q. Zhan, Z. P. Ou, K. M. Kadish, L. Zakharov, A. L. Rheingold, D. P. Goldberg, Inorg. Chem. 2005, 44, 4485–4498; 10.1021/ic0503636 CASPubMedWeb of Science®Google Scholar 5bD. E. Lansky, D. P. Goldberg, Inorg. Chem. 2006, 45, 5119–5125; 10.1021/ic060491+ CASPubMedWeb of Science®Google Scholar 5cK. A. Prokop, S. P. de Visser, D. P. Goldberg, Angew. Chem. 2010, 122, 5217–5221; 10.1002/ange.201001172 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 5091–5095. 10.1002/anie.201001172 CASPubMedWeb of Science®Google Scholar 6M. Reiher, O. Salomon, B. A. Hess, Theor. Chem. Acc. 2001, 107, 48–55. 10.1007/s00214-001-0300-3 CASWeb of Science®Google Scholar 7 7aD. Janardanan, Y. Wang, P. Schyman, L. Que, Jr., S. Shaik, Angew. Chem. 2010, 122, 3414–3417; 10.1002/ange.201000004 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 3342–3345; 10.1002/anie.201000004 CASPubMedWeb of Science®Google Scholar 7bS. Shaik, H. Chen, D. Janardanan, Nat. Chem. 2011, 3, 19–27; 10.1038/nchem.943 CASPubMedWeb of Science®Google Scholar 7cH. Hirao, D. Kumar, L. Que, Jr., S. Shaik, J. Am. Chem. Soc. 2006, 128, 8590–8606; 10.1021/ja061609o CASPubMedWeb of Science®Google Scholar 7dFor a similar statement, see: L. Bernasconi, M. J. Louwerse, E. J. Baerends, Eur. J. Inorg. Chem. 2007, 3023–3033. 10.1002/ejic.200601238 CASWeb of Science®Google Scholar 8aJaguar, version 7.6; Schrödinger, LLC: New York, 2008; Google Scholar 8bGaussian03 (Revision D.01), M. J. Frisch, et al. Gaussian, Inc., Wallingford, CT, 2004. See the Supporting Information for full citation of G03. Google Scholar 9A. Altun, W. Thiel, J. Phys. Chem. B 2005, 109, 1268–1280. 10.1021/jp0459108 CASPubMedWeb of Science®Google Scholar 10R. Poli, J. N. Harvey, Chem. Soc. Rev. 2003, 32, 1–8. 10.1039/b200675h CASPubMedWeb of Science®Google Scholar 11 11aR. P. Bell, Proc. R. Soc. London Ser. A 1936, 154, 414–421; 10.1098/rspa.1936.0060 Google Scholar 11bM. G. Evans, M. Polanyi, Trans. Faraday. Soc. 1938, 34, 11–24. 10.1039/tf9383400011 CASPubMedWeb of Science®Google Scholar 12D. Schröder, S. Shaik, Angew. Chem. 2011, 123, 3934–3935; 10.1002/ange.201007636 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 3850–3851. 10.1002/anie.201007636 CASWeb of Science®Google Scholar 13 13aH. Hirao, D. Kumar, W. Thiel, S. Shaik, J. Am. Chem. Soc. 2005, 127, 13007–13018; 10.1021/ja053847+ CASPubMedWeb of Science®Google Scholar 13bD. Janardanan, D. Usharani, H. Chen, S. Shaik, J. Phys. Chem. Lett. 2011, 2, 2610–2617. 10.1021/jz201224x CASWeb of Science®Google Scholar 14E. Carter, W. A. Goddard III, J. Phys. Chem. 1988, 92, 5679–5683. 10.1021/j100331a026 CASWeb of Science®Google Scholar 15 15aK. Kitaura, K. Morokuma, Int. J. Quantum Chem. 1976, 10, 325–340; 10.1002/qua.560100211 CASWeb of Science®Google Scholar 15bD. H. Ess, K. N. Houk, J. Am. Chem. Soc. 2008, 130, 10187–10198; 10.1021/ja800009z CASPubMedWeb of Science®Google Scholar 15cW.-J. van Zeist, F. M. Bickelhaupt, Org. Biomol. Chem. 2010, 8, 3118–3127. 10.1039/b926828f CASPubMedWeb of Science®Google Scholar 16aZ. Gross, G. Golubkov, L. Simkhovich, Angew. Chem. 2000, 112, 4211–4213; 10.1002/1521-3757(20001117)112:22 3.0.CO;2-E Google ScholarAngew. Chem. Int. Ed. 2000, 39, 4045–4047; 10.1002/1521-3773(20001117)39:22 3.0.CO;2-P CASPubMedWeb of Science®Google Scholar 16bA. Kumar, I. Goldberg, M. Botoshansky, Y. Buchman, Z. Gross, J. Am. Chem. Soc. 2010, 132, 15233–15245. 10.1021/ja1050296 CASPubMedWeb of Science®Google Scholar 17S. Shaik, W. Z. Lai, H. Chen, Y. Wang, Acc. Chem. Res. 2010, 43, 1154–1165. 10.1021/ar100038u CASPubMedWeb of Science®Google Scholar 18 18aC. V. Sastri, J. Lee, K. Oh, Y. J. Lee, J. Lee, T. A. Jackson, K. Ray, H. Hirao, W. Shin, J. A. Halfen, J. Kim, L. Que, Jr., S. Shaik, W. Nam, Proc. Natl. Acad. Sci. USA 2007, 104, 19181–19186; 10.1073/pnas.0709471104 CASPubMedWeb of Science®Google Scholar 18bY. Kang, H. Chen, J. Y. Jeong, W. Z. Lai, E. H. Bae, S. Shaik, W. Nam, Chem. Eur. J. 2009, 15, 10039–10046. 10.1002/chem.200901238 CASPubMedWeb of Science®Google Scholar 19For other ligand-dependent spin-state reactivity effects, see: L. Kaustov, M. E. Tal, A. I. Shames, Z. Gross, Inorg. Chem. 1997, 36, 3503–3511. 10.1021/ic961207p CASPubMedWeb of Science®Google Scholar Citing Literature Volume124, Issue18April 27, 2012Pages 4497-4501 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX