The p53 pathway
1999; Volume: 187; Issue: 1 Linguagem: Inglês
10.1002/(sici)1096-9896(199901)187
ISSN1096-9896
Autores Tópico(s)Cancer, Lipids, and Metabolism
ResumoThe Journal of PathologyVolume 187, Issue 1 p. 112-126 Review ArticleFree Access The p53 pathway Carol Prives, Carol Prives Department of Biological Sciences, Columbia University, New York, 10027 U.S.A.Search for more papers by this authorPeter A. Hall, Corresponding Author Peter A. Hall p.a.hall@dundee.ac.uk Department of Cellular and Molecular Pathology, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, U.K.Department of Cellular and Molecular Pathology, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, U.K.Search for more papers by this author Carol Prives, Carol Prives Department of Biological Sciences, Columbia University, New York, 10027 U.S.A.Search for more papers by this authorPeter A. Hall, Corresponding Author Peter A. Hall p.a.hall@dundee.ac.uk Department of Cellular and Molecular Pathology, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, U.K.Department of Cellular and Molecular Pathology, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, U.K.Search for more papers by this author First published: 24 September 1999 https://doi.org/10.1002/(SICI)1096-9896(199901)187:1 3.0.CO;2-3Citations: 976AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Abstract Abnormalities of the p53 tumour suppressor gene are among the most frequent molecular events in human and animal neoplasia. Moreover, p53 is one of the most studied proteins in the whole of contemporary biology, with more than 12500 papers so far written! In this review the choice has been deliberately made not to be fully comprehensive in the coverage of the huge p53 literature. Rather attention is focused on a small number of recent developments which are reviewed in the context of modern models of p53 function. Progress in the analysis of signalling to p53 including phosphorylation cascades, and interactions with proteins such as mdm2 and ARF are highlighted. The plethora of protein–protein interactions is discussed, as are the strategies for defining downstream targets of p53. Finally, the emerging biology of p53 homologues is considered. The need for bridging the gap between reductionist, biochemical and biophysical studies and biological and genetic analysis is emphasized. Only this will provide the needed framework for utilizing the information in clinical care. Copyright © 1999 John Wiley & Sons, Ltd. REFERENCES 1 Hall PA, Meek D, Lane DP. p53: integrating the complexity. J Pathol 1996; 180: 1– 5. 2 Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev 1996; 10: 1054– 1072. 3 Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323– 331. 4 Agarwal ML, Taylor WR, Chernov MV, Chernova OB, Stark GR. The p53 network. J Biol Chem 1998; 273: 1– 4. 5 Harris CC. p53 tumor suppressor gene: from the basic research laboratory to the clinic—an abridged historical perspective. Carcinogenesis 1996; 17: 1187– 1198. 6 Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994; 54: 4855– 4878. 7 Hainaut P, Hernadez T, Robinson A, et al. IARC database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualisation tools. Nucleic Acids Res 1998; 26: 205– 213. 8 Dowell SP, Hall PA. The p53 tumour suppressor gene and tumour prognosis: is there a relationship? J Pathol 1995; 177: 221– 224. 9 Bosari S, Viale G. The clinical significance of p53 aberrations in human tumours. Virchows Arch 1995; 427: 229– 241. 10 Bray SE, Schorl C, Hall PA. The challenge of p53: linking biology, biochemistry and patient management. Stem Cells 1998; 16: 248– 260. 11 Nielsen LL, Maneval DC. p53 tumor suppressor gene therapy for cancer. Cancer Gene Ther 1998; 5: 52– 63. 12 Soussi T, May P. Structural aspects of the p53 protein in relation to gene evolution: a second look. J Mol Biol 1996; 260: 623– 637. 13 Arrowsmith CHP, Morin P. New insights into p53 function from structural studies. Oncogene 1996; 12: 1379– 1385. 14 El-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B. Definition of a consensus binding site for p53. Nature Genet 1992; 1: 45– 49. 15 Bourdon JC, Deguin-Chambon V, Lelong JC, et al. Further characterisation of the p53 responsive element—identification of new candidate genes for trans-activation by p53. Oncogene 1997; 14: 85– 94. 16 Jeffrey PD, Gorina S, Pavletich NP. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1–7 angstroms. Science 1995; 267: 1498– 1502. 17 Gorina S, Pavletich NP. Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 1996; 274: 1001– 1005. 18 Yuan ZM, Huang Y, Whang Y, et al. Role for c-Ab1 tyrosine kinase in growth arrest response to DNA damage. Nature 1996; 382: 272– 274. 19 Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296– 299. 20 Kubbutat MHG, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997; 387: 299– 303. 21 Wu X, Bayle JH, Olson D, Levine AJ. The p53–mdm-2 autoregulatory feedback loop. Genes Dev 1993; 7: 1126– 1132. 22 Midgley CA, Owens B, Briscoe CV, Thomas DB, Lane DP, Hall PA. Coupling between gamma irradiation, p53 induction and the apoptotic response depends upon cell type in vivo. Cell Sci 1995; 108: 1843– 1841. 23 MacCallum DE, Hupp TR, Midgley CA, et al. The p53 response to ionising radiation in adult and developing murine tissues. Oncogene 1996; 13: 2575– 2587. 24 Gottlieb E, Haffner R, King A, et al. Transgenic mouse model for studying the transcriptional activity of the p53 protein: age- and tissue-dependent changes in radiation-induced activation during embryogenesis. EMBO J 1997; 16: 1381– 1390. 25 Komarova EA, Chernov MV, Franks R, et al. Transgenic mice with p53–responsive lacZ: p53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo. EMBO J 1997; 16: 1391– 1400. 26 Chen X, Ko LJ, Jayaraman L, Prives C. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev 1996; 10: 2438– 2451. 27 Lassus P, Ferlin M, Piette J, Hibner U. Anti-apoptotic activity of low levels of wild-type p53. EMBO J 1996; 15: 4566– 4573. 28 Moll UM, Ostermeyer AG, Haladay R, Winkfield B, Frazier M, Zambetti G. Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol Cell Biol 1996; 16: 1126– 1137. 29 Ostermeyer AG, Runko E, Winkfield B, Ahn B, Moll UM. Cytoplasmically sequestered wild-type p53 protein in neuroblastoma is relocated to the nucleus by a C-terminal peptide. Proc Natl Acad Sci USA 1996; 93: 15190– 15194. 30 Bottger A, Bottger V, Sparks A, Liu WL, Howard SF, Lane DP. Design of a synthetic Mdm2–binding mini protein that activates the p53 response in vivo. Curr Biol 1997; 7: 860– 869. 31 Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 1997; 420: 25– 27. 32 Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J 1998; 17: 554– 564. 33 Grossman SR, Perez M, Kung AL, et al. p300/MDM2 complexes participate in MDM2–mediated p53 degradation. Mol Cell 1988; 2: 405– 415. 34 Gu W, Roeder RG Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 1997; 90: 595– 606. 35 Sakaguchi K, Herrera JE, Saito S, et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 1998; 12: 2831– 2841. 36 Meek D. Post-translational modification of p53. Semin Cancer Biol 1994; 5: 203– 207. 37 Ko L, Chen X, Shieh S-, et al. p53 is phosphorylated by CDK7/cyclin H in a 36/MAT1 dependent manner. Mol Cell Biol 1997; 17: 7220– 7229. 38 Milne DM, Campbell LE, Campbell DG, Meek DW. p53 is phosphorylated in vitro and in vivo by an ultraviolet radiation induced protein kinase characteristic of the c-Jun kinase, JNK1. J Biol Chem 1995; 270: 5511– 5518. 39 Adler V, Pincus MR, Minamoto T, et al. Conformation-dependent phosphorylation of p53. Proc Natl Acad Sci USA 1997; 94: 1686– 1691. 40 Milne DM, Campbell DG, Caudwell FB, Meek DW. Phosphorylation of the tumor suppressor protein p53 by mitogen-activated protein kinases. J Biol Chem 1994; 269: 9253– 9260. 41 Shieh S-Y, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by mdm2. Cell 1997; 91: 325– 334. 42 Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E, Kastan MB. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 1997; 11: 3471– 3481. 43 Banin S, Moyal L, Khostravi R, et al. Enhanced phosphorylation of p53 by ATM response to DNA damage. Science (in press). 44 Canman CE, LIM DS, Cimprich KA, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science (in press). 45 Woo RA, McLure KG, Lees-Miller SP, Rancourt D, Lee PWK. DNA-dependent protein kinase acts upstream of p53 in response to DNA damage. Nature 1998; 394: 700– 704. 46 Sakaguchi K, Herrera JE, Saito S, et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 1998; 12: 2831– 2841. 47 Knippschild U, Milne DM, Campbell LE, et al. p53 is phosphorylated in vitro and in vivo by the delta and epsilon isoforms of casein kinase 1 and enhances the level of casein kinase 1 delta in response to topoisomerase-directed drugs. Oncogene 1997; 15: 1727– 1730. 48 Gottlieb MT, Oren M. p53 in growth control and neoplasia. Biochem Biophys Acta 1996; 1287: 77– 102. 49 Fuchs SY, Adler V, Pincus M, Ronai Z. MEKK1/JNK signalling stabilizes and activates p53. Proc Natl Acad Sci USA 1998; 95: 10541– 10546. 50 Pise-Masison CA, Radonovich M, Sakaguchi K, Appella E, Brady JN. Phosphorylation of p53: a novel pathway for p53 inactivation in human T-cell lymphotropic virus type 1–transformed cells. J Virol 1998; 72: 6348– 6355. 51 Jeffrey PD, Gorina S, Pauletich NP. Crystal structure of the tetramerization domain of the p53 tumour suppressor at 1–7 angstroms. Science 1995; 267: 1498– 1502. 52 Waterman JL, Shenk JL, Halazonetis TD. The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding. EMBO J 1995; 14: 512– 519. 53 Chene P, Mittl P, Grutter M. In vitro structure-function analysis of the beta-strand 326–333 of human p53. J Mol Biol 1997; 273: 873– 881. 54 McCoy M, Stavridi ES, Waterman JL, Wieczorek AM, Opella SJ, Halazonetis TD. Hydrophobic side-chain size is a determinant of the three-dimensional structure of the p53 oligomerization domain. EMBO J 1997; 16: 6230– 6236. 55 Waterman MJ, Waterman JL, Halazonetis TD. An engineered four-stranded coiled coil substitutes for the tetramerization domain of wild-type p53 and alleviates transdominant inhibition by tumor-derived p53 mutants. Cancer Res 1996; 56: 158– 163. 56 Ishioka C, Englert C, Winge P, Yan YX, Engelstein M, Friend SH. Mutational analysis of the carboxy-terminal portion of p53 using both yeast and mammalian cell assays in vivo. Oncogene 1995; 10: 1485– 1492. 57 Pellegata NS, Cajot JF, Stanbridge EJ. The basic carboxy-terminal domain of human p53 is dispensable for both transcriptional regulation and inhibition of tumor cell growth. Oncogene 1995; 11: 337– 349. 58 Lomax ME, Barnes DM, Gilchrist R, Picksley SM, Varley JM, Camplejohn RS. Two functional assays employed to detect an unusual mutation in the oligomerisation domain of p53 in a Li-Fraumeni like family. Oncogene 1997; 14: 1869– 1874. 59 Hupp TR, Meek DW, Midgley CA, Lane DP. Regulation of the specific DNA binding function of p53. Cell 1992; 71: 875– 886. 60 Hupp TR, Lane DP. Allosteric activation of latent p53 tetramers. Curr Biol 1994; 4: 865– 875. 61 Halazonetis TD, Davis LJ, Kandil AN. Wild-type p53 adopts a ‘mutant’-like conformation when bound to DNA. EMBO J 1993; 12: 1021– 1028. 62 Bayle JH, Elenbaas B, Levine AJ. The carboxyl-terminal domain of the p53 protein regulates sequence-specific DNA binding through its nonspecific nucleic acid binding activity. Proc Natl Acad Sci USA 1995; 92: 5729– 5733. 63 Anderson ME, Woelker B, Reed M, Wang P, Tegtmeyer P. Reciprocal interference between the sequence-specific core and nonspecific C-terminal DNA binding domains of p53: implications for regulation. Mol Cell Biol 1997; 17: 6255– 6264. 64 Hao M, Lowy AM, Kapoor M, Deffie A, Liu G. Lozano G. Mutation of phospherine 389 affects p53 function in vivo. J Biol Chem 1996; 271: 29380– 29385. 65 Appel K, Wagner P, Boldyreff B, Issinger OG, Montenarh M. Mapping of the interaction sites of the growth suppressor protein p53 with the regulatory beta-subunit of protein kinase CK2. Oncogene 1995; 11: 1971– 1978. 66 Filhol O, Boudier J, Chambaz EM, Cochet C. Casein kinase 2 inhibits the renaturation of complementary DNA strands mediated by p53 protein. Biochem J 1996; 316: 331– 335. 67 Kapoor M, Lozano G. Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation. Proc Natl Acad Sci USA 1998; 95: 2834– 2837. 68 Lu H, Taya Y, Ikeda M, Levine AJ. Ultraviolet radiation, but not gamma radiation or etoposide-induced DNA damage, results in the phosphorylation of the murine p53 protein at serine-389. Proc Natl Acad Sci USA 1998; 95: 6399– 6402. 69 Milne D, McKendrick L, Jardine LJ, Deacon E, Lord JM, Meek DW. Murine p53 is phosphorylated within the PAb421 epitope by protein kinase C in vitro, but not in vivo, even after stimulation with the phorbol ester o-tetradecanoylphorbol 13–acetate. Oncogene 1996; 13: 205– 211. 70 Delphin C, Huang KP, Scotto C, et al. The in vitro phosphorylation of p53 by calcium-dependent protein kinase C: characterization of a protein-kinase-C-binding site on p53. Eur J Biochem 1997; 245: 684– 692. 71 Chernov MV, Ramma CV, Adler VV, Stark GR. Stabilization and activation of p53 are regulated independently by different phosphorylation events. Proc Natl Acad Sci USA 1998; 95: 2284– 2289. 72 Pitkanen K, Haapajarvi T, Laiho M. U.V.C.-induction of p53 activation and accumulation is dependent on cell cycle and pathways involving protein synthesis and phosphorylation. Oncogene 1998; 16: 459– 469. 73 Waterman MJ, Stavridi ES, Waterman JL, Halazonetis TD. ATM-dependent activation of p53 involves dephosphorylation and association with 14–3–3 proteins. Nature Genet 1998; 19: 175– 178. 74 Wang Y, Prives C. Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 1995; 376: 88– 91. 75 Hansen S, Midgley CA, Lane DP, et al. Modification of two distinct COOH-terminal domains is required for murine p53 activation by bacterial Hsp70. J Biol Chem 1996; 271: 30922– 30928. 76 Wagner P, Fichs A, Gotz C, Nastainczyk W, Montenarh M. Fine mapping and regulation of the association of p53 with p34cdc2. Oncogene 1998; 16: 105– 111. 77 Lu H, Fisher RP, Bailey P, Levine AJ. The CDK7–cycH-p36 complex of transcription factor IIH phosphorylates p53, enhancing its sequence-specific DNA binding activity in vitro. Mol Cell Biol 1997; 17: 5923– 5934. 78 Shaw P, Freeman J, Bovey R, Iggo R. Regulation of specific DNA binding by p53: evidence for a role for O-glycosylation and charged residues at the carboxy-terminus. Oncogene 1996; 12: 20797– 20802. 79 Balkalkin G, Selivanova G, Yakovleva T, et al. p53 binds single-stranded DNA ends through the C-terminal domain and internal DNA segments via the middle domain. Nucleic Acids Res 1995; 23: 362– 369. 80 Lee S, Elenbaas B, Levine A, Griffith J. p53 and its 14kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell 1995; 81: 1013– 1020. 81 Lee S, Cavallo L, Griffith J. Human p53 binds Holliday junctions strongly and facilitates their cleavage. J Biol Chem 1997; 272: 7532– 7539. 82 Reed M, Woelker B, Wang P, Wang Y, Anderson ME, Tegtmeyer P. The C-terminal domain of p53 recognizes DNA damaged by ionizing radiation. Proc Natl Acad Sci USA 1995; 92: 9455– 9459. 83 Buchhop S, Gibson MK, Wang XW, Wagner P, Sturzbecher HW, Harris CC. Interaction of p53 with the human Rad51 protein. Nucleic Acids Res 1997; 25: 3868– 3874. 84 Jayaraman L, Murthy KGK, Curran T, Xanthoudakis S, Rives C. Identification of redox/repair protein Ref-1 as an activator orf p53. Genes Dev 1997; 11: 558– 570. 85 Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4A locus tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 1995; 83: 993– 1000. 86 Kamijo T, Zindy F, Roussel MF, et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 1997; 91: 649– 659. 87 Pomerantz J, Schreiber-Agus N, Liegeois NJ, et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2′s inhibition of p53. Cell 1998; 92: 713– 723. 88 Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 1998; 95: 8292– 8297. 89 Stott F, Bates SA, James M, et al. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J 1998; 17: 5001– 5014. 90 Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998; 92: 725– 734. 91 Bates S, Phillips A, Clarke P, et al. E2F-1 regulation of p14ARF links pRb and p53. Nature (in press). 92 de Stanchina E, McCurrach ME, Zindy F, et al. E1 a signalling to p53 involves the p19ARF tumor suppressor. Genes Dev 1998; 12: 2434– 2443. 93 Zindy F, et al. MYC-induced immortalization and apoptosis targets the ARF-p53 pathway. Genes Dev 1998; 12: 2424– 2433. 94 Palermo I, Pantoja C, Serrano M. p19ARF links the tumour suppressor p53 to RAS. Nature 1998; 395: 125– 126. 95 Lane DP, Crawford L. T antigen is bound to a host protein in SV40 transformed cells. Nature 1979; 278: 261– 263. 96 Linzer DI, Levine AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40–transformed cells and uninfected embryonal carcinoma cells. Cell 1979; 17: 43– 52. 97 Kao CC, Yew PR, Berk AJ. Domains required for in vitro association between the cellular p53 and the adenovirus 2 E1 B 5KK proteins. Virology 1990; 179: 806– 814. 98 Dobner T, Horikoshi N, Rubenwolf S, Shenk T. Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science 1996; 272: 1470– 1473. 99 Scheffner M, Takahashi T, Huibregtse JM, Minna JD, Howley PM. Interaction of the human papillomavirus type 16 E6 oncoprotein with wild-type and mutant human p53 proteins. J Virol 1992; 66: 5100– 5105. 100 Szekely L, Selivanova G, Magnusson KP, Klein G, Wiman KG. EBNA-5, an Epstein-Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci USA 1993; 90: 5455– 5459. 101 Feitelson MA, Zhu M, Duan LX, London WT. Hepatitis B x antigen and p53 are associated in vitro and in liver tissues from patients with primary hepatocellular carcinoma. Oncogene 1993; 8: 1109– 1117. 102 Speir E, Modali R, Huang ES, et al. Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science 1994; 265: 391– 394. 103 Lill NL, Grossman SR, Ginsberg D, DeCaprio J, Livingstone DM. Binding and modulation of p53 by p300/CBP coactivators. Nature 1997; 387: 823– 827. 105 Pinhasi-Kimhi O, Michaalovitz D, Ben-Zeev A, Oren M. Specific interaction between the p53 cellular tumour antigen and major heat shock proteins. Nature 1986; 320: 182– 184. 106 Marechal V, Elenbaas B, Piette J, Nicolas JC, Levine AJ. The ribosomal L5 protein is associated with mdm-2 and mdm-2–p53 complexes. Mol Cell Biol 1994; 14: 7414– 7420. 107 Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The edm-2 oncogene product forms a complex with the p53 protein and inhibits p53–mediated transactivation. Cell 1992; 69: 1237– 1245. 108 Shvarts A, Steegenga WT, Riteco N, et al. MDMX: a novel p53–binding protein with some functional properties of MDM2. EMBO J 1996; 15: 5349– 5357. 109 Iwabuchi K, Bartel PL, Li B, Marraccino R, Fields S. Two cellular proteins that bind to wild-type but not mutant p53. Proc Natl Acad Sci USA 1994; 91: 6098– 6102. 110 Warbrick E. Two's company, three's a crowd: the yeast two hybrid system for mapping molecular interactions. Structure 1997; 5: 13– 17. 111 Baudier J, Delphin C, Grunwald D, Khochbin S, Lawrence JJ. Characterization of the tumor suppressor protein p53 as a protein kinase C substrate and a S100b-binding protein. Proc Natl Acad Sci USA 1992; 89: 11627– 11631. 112 Gualberto A, Baldwin AS Jr. p53 and Sp1 interact and cooperate in the tumor necrosis factor-induced transcriptional activation of the HIV-1 long terminal repeat. J Biol Chem 1995; 270: 19680– 19683. 113 Lu H, Levine AJ. Human TAFII31 protein is a transcriptional coactivator of the p53 protein. Proc Natl Acad Sci USA 1995; 92: 5154– 5158. 114 Seto E, Usheva A, Zambetti GP, et al. Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc Natl Acad Sci USA 1992; 89: 12028– 12032. 115 Maheswaran S, Park S, Bernard A, et al. Physical and functional interaction between WT1 and p53 proteins. Proc Natl Acad Sci USA 1993; 90: 5100– 5104. 116 Milner J, Cook A, Mason J. p53 is associated with p34cdc2 in transformed cells. EMBO J 1990; 9: 2885– 2889. 117 Dutta A, Ruppert JM, Aster JC, Winchester E. Inhibition of DNA replication factor RPA by p53. Nature 1993; 365: 79– 82. 118 Garkavtsev I, Grigorian IA, Ossovskaya VS, Chernov MV, Chumakov PM, Gudkov AV. The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control. Nature 1998; 391: 295– 298. 119 Jayaraman L, Moorthy NC, Murthy KG, Manley JL, Bustin M, Prives C. High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dev 1998; 12: 462– 472. 120 Klotzsche O, Eisman T, Hohenburg H, Bohn W, Deppert W. Cytoplasmic retention of mutant tsp53 is dependent on an intermediate filament protein (vimentin) scaffold. Oncogene 1998; 16: 3423– 3434. 121 O'Connor DJ, Lam EW, Griffin S, et al. Physical and functional interactions between p53 and cell cycle co-operating transcription factors, E2F1 and DP1. EMBO J 1995; 14: 6184– 6192. 122 Zhang H, Somasundaram K, Peng Y, et al. BRCA1 physically associates with p53 and stimulates its transcriptional activity. Oncogene 1998; 16: 1713– 1721. 123 LaThangue, et al. personel communication. 124 Lees-Miller SP, Chen YR, Anderson CW. Human cells contain a DNA-activated protein kinase that phosphorylates simian virus 40 T antigen, mouse p53, and the human Ku autoantigen. Mol Cell Biol 1990; 10: 6472– 6481. 125 Milne DM, Palmer RH, Campbell DG, Meek DW. Phosphorylation of the p53 tumour-suppressor protein at three N-terminal sites by a novel casein kinase I-like enzyme. Oncogene 1992; 7: 1361– 1369. 126 Meek DW, Simon S, Kikkawa U, Eckhart W. The p53 tumour suppressor protein is phosphorylated at serine 389 by casein kinase II. EMBO J 1990; 9: 3253– 3260. 127 Baudier J, Delphin C, Grunwald D, Khochbin S, Lawrence JJ. Characterization of the tumor suppressor protein p53 as a protein kinase C substrate and a S100b-binding protein. Proc Natl Acad Sci USA 1992; 89: 11627– 11631. 128 Milne DM, Campbell DG, Caudwell FB, Meek DW. Phosphorylation of the tumor suppressor protein p53 by mitogen-activated protein kinases. J Biol Chem 1994; 269: 9253– 9260. 129 Ishioka C, Englert C, Winge P, Yan YX, Engelstein M, Friend SH. Mutational analysis of the carboxy-terminal portion of p53 using both yeast and mammalian cell assays in vivo. Oncogene 1995; 10: 1485– 1492. 130 Hall PA, Lane DP. p53—a developing role? Curr Biol 1997; 7: 144– 147. 131 Kaghad M, Bonnet H, Yang A et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 1997; 90: 809– 819. 132 Takahashi H, Ichimiya S, Nimura Y, et al. Mutation, allelotyping, and transcription analyses of the p73 gene in prostatic carcinoma. Cancer Res 1998; 58: 2076– 2077. 133 Mai M, Yokomizo A, Qian C, et al. Activation of p73 silent allele in lung cancer. Cancer Res 1998; 58: 2347– 2349. 134 Nomoto S, Haruki N, Kondo M, et al. Search for mutations and examination of allelic expression imbalance of the p73 gene at 1p366.33 in human lung cancers. Cancer Res 1998; 58: 1380– 1383. 135 Sunahara M, Ichimiya S, Nimura Y, et al. Mutational analysis of the p73 gene localized at chromosome 1p36.3 in colorectal carcinomas. Int J Oncol 1998; 13: 319– 323. 136 Kovalev S, Marchenko N, Swendeman S, laQuaglia M, Moll UM. Expression level, allelic origin and mutation analysis of the p73 gene in neuroblastoma tumours and cell lines. Cell Growth Different (in press). 137 Jost CA, Marin MC, Kaelin WG Jr. p73 is a human p53–related protein that can induce apoptosis. Nature 1997; 389: 191– 194. 138 Prabhu NS, Somasundaram K, Satyamoorthy K, Herlyn M, El-Deiry WS. p73, unlike p53, suppresses growth and induces apoptosis of human papillomavirus E6–expressing cancer cells. Int J Oncol 1998; 13: 5– 9. 139 Schmale S, Bamberger C. A novel protein with strong homology to the tumour suppressor p53. Oncogene 1997; 15: 1363– 1367. 140 Osada M, Ohba M, Kawahara C, et al. Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nature Med 1998; 4: 839– 843. 141 Senoo M, Seki N, Ohira M, et al. A second p53 related protein, p73L, with homology to p73. Biochem Biophys Res Commun 1998; 248: 603– 607. 142 Bork P, Koonin EV. Predicting functions from protein sequences—where are the bottlenecks? Nature Genet 1998; 18: 313– 318. 143 Schultz J, Ponting CP, Hofmann K, Bork P. SAM as a protein interaction domain involved in developmental regulation. Protein Sci 1997; 6: 249– 253. 144 Bian J, Sun Y. p53CP, a putative p53 competing protein that specifically binds to the consensus p53 DNA binding sites: a third member of the p53 family? Proc Natl Acad Sci USA 1997; 94: 14753– 14758. 145 Zeng X, Levine AJ, Lu H. Non-p53 sp53RE binding protein, a human transcription factor functionally analogous to P53. Proc Natl Acad Sci USA 1998; 95: 6681– 6686. 146 Drane P, Barel M, Balbo M, Frade R. Identification of RB19A, a 205 kDa new p53 regulatory protein which shares antigenic and functional properties with p53. Oncogene 1997; 15: 3013– 3024. 147 Gualberto A, Aldape K, Kozakiewicz K, Tlsty TD. An oncogenic form of p53 confers a dominant, gain-of-function phenotype that disrupts spindle checkpoint control. Proc Natl Acad Sci USA 1998; 95: 5166– 5171. 148 Blandino G, Levine AJ, Oren M. Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene (in press). 149 Wang-Gohrke S, Rebbeck TR, Besenfelder W, Kreienberg R, Runnebaum IB. p53 germline polymorphisms are associated with an increased risk for breast cancer in German women. Anticancer Res 1998; 18: 2095– 2099. 150 Buller RE, Sood A, Fullenkamp C, Sorosky J, Powills K, Anderson B. The influence of the p53 codon 72 polymorphism on ovarian carcinogenesis and prognosis. Cancer Gene Ther 1997; 4: 239– 245. 151 Storey A, Thomas M, Kalita A, et al. Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature 1998; 393: 229– 234. 152 Rosenthal AN, Ryan A, Al-Jehani RM, Storey A, Harwood CA, Jacobs IJ. p53 codon 72 polymorphism and risk of cervical cancer in the UK. Lancet 1998; 352: 871– 872. 153 Venkatachalam S, Shi Y-P, Jones SN, et al. Retention of wild-type p53 tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation. EMBO J 1998; 17: 4657– 4667. 154 Evans SC, Mims B, McMasters KM, et al. Exclusion of a p53 germline mutation in a classic Li-Fraumeni syndrome family. Hum Genet (in press). 155 O'Neill M, Campbell SJ, Save V, Thompson A, Hall PA. An immuno-chemical analysis of mdm2 expression in human breast cancer and the identification of a growth regulated cross reacting species, p170. J Pathol 1998; 186: 254– 261. 156 Yang A, Kaghad M, Wang Y, et al. P63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death inducing and dominant negative activities. Molecular Cell 1998; 2: 305– 316. Citing Literature Volume187, Issue1Special Issue: Molecular and Cellular Themes in Cancer ResearchJanuary 1999Pages 112-126 ReferencesRelatedInformation
Referência(s)