Total Syntheses of Naturally Occurring Molecules Possessing 1,7-Dioxaspiro[4.4]nonane Skeletons
1999; Wiley; Volume: 1999; Issue: 8 Linguagem: Inglês
10.1002/(sici)1099-0690(199908)1999
ISSN1434-193X
Autores Tópico(s)Asymmetric Synthesis and Catalysis
ResumoEuropean Journal of Organic ChemistryVolume 1999, Issue 8 p. 1757-1765 Microreview Total Syntheses of Naturally Occurring Molecules Possessing 1,7-Dioxaspiro[4.4]nonane Skeletons Henry N. C. Wong, Henry N. C. Wong [email protected] Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Fax: (internat.) + 852/2603-5057Search for more papers by this author Henry N. C. Wong, Henry N. C. Wong [email protected] Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Fax: (internat.) + 852/2603-5057Search for more papers by this author First published: 15 July 1999 https://doi.org/10.1002/(SICI)1099-0690(199908)1999:8 3.0.CO;2-UCitations: 17AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The syntheses of several naturally occurring molecules, namely prehispanolone, sphydrofuran, secosyrins, and syringolides are reviewed. Interestingly, these compounds are all structurally related, possessing a 1,7-dioxaspiro[4.4]nonane framework. The pivotal step in these synthetic endeavors involves the peracid oxidation of substituted 2-trimethylsilylfurans to but-2-en-4-olides. A subsequent intramolecular Michael addition procedure was also essential in the construction of the spiro skeleton. Two significant issues concerning regioselectivity and stereoselectivity are also addressed. References 1 P. M. Hon, C. M. Lee, H. S. Shang, Y. X. Cui, H. N. C. Wong, H. M. Chang, Phytochemistry 1991 30, 354–356. 10.1016/0031-9422(91)84154-K CASWeb of Science®Google Scholar 2 P. Iñarrea, J. Gomez-Cambronero, M. Nieto, M. S. Crespo, Eur. J. Pharmacol. 1984 105, 309–315. 10.1016/0014-2999(84)90623-X CASPubMedWeb of Science®Google Scholar 3 C. M. Lee, L. M. Jiang, H. S. Shang, P. M. Hon, Y. He, H. N. C. Wong, Br. J. Pharmacol. 1991 108, 1719–1724. 10.1111/j.1476-5381.1991.tb09853.x Web of Science®Google Scholar 4[4a] J. D. White, P. S. Manchand, J. Am. Chem. Soc. 1970 92, 5527–5528. 10.1021/ja00721a046 CASWeb of Science®Google Scholar[4b] – J. D. White, P. S. Manchand, J. Org. Chem. 1973 38, 720–728. 10.1021/jo00944a023 CASWeb of Science®Google Scholar 5 G. Savona, F. Piozzi, B. Rodríguez, Heterocycles 1978 9, 257–261. 10.3987/R-1978-03-0257 CASWeb of Science®Google Scholar 6[6a] S. Umezawa, T. Usui, H. Umezawa, T. Tsuchiya, T. Takeuchi, M. Hamada, J. Antibiot. 1971 24, 85–92. 10.7164/antibiotics.24.85 CASPubMedWeb of Science®Google Scholar[6b] – S. Umezawa, T. Tsuchiya, H. Naganawa, T. Takeuchi, H. Umezawa, J. Antibiot. 1971 24, 93–106. 10.7164/antibiotics.24.93 PubMedWeb of Science®Google Scholar 7 K. U. Bindseil, T. Henkel, A. Zeeck, D. Bur, D. Niederer, U. Séquin, Helv. Chim. Acta 1991 74, 1281–1286. 10.1002/hlca.19910740617 CASWeb of Science®Google Scholar 8[8a] M. J. Smith, E. P. Mazzola, J. J. Sims, S. L. Midland, N. T. Keen, V. Burton, M. M. Stayton, Tetrahedron Lett. 1993 34, 223–226. 10.1016/S0040-4039(00)60552-X CASWeb of Science®Google Scholar[8b] – S. L. Midland, N. T. Keen, J. J. Sims, M. M. Midland, M. M. Stayton, V. Burton, M. J. Smith, E. P. Mazzola, K. J. Graham, J. Clardy, J. Org. Chem. 1993 58, 2940–2945. 10.1021/jo00063a007 CASWeb of Science®Google Scholar[8c] – S. L. Midland, N. T. Keen, J. J. Sims, J. Org. Chem. 1995 60, 1118–1119. 10.1021/jo00110a012 CASWeb of Science®Google Scholar 9[9a] N. T. Keen, S. Tamaki, D. Kobayashi, D. Gerhold, M. M. Stayton, H. Shen, S. Gold, J. Lorang, H. Thordal-Christensen, D. Dahlbeck, B. Staskawicz, Mol. Plant–Microbe Interact. 1990 3, 112–121. 10.1094/MPMI-3-112 CASWeb of Science®Google Scholar[9b] – N. T. Keen, R. I. Buzzell, Theoret. Appl. Genet. 1991 81, 133–138. 10.1007/BF00226123 CASPubMedWeb of Science®Google Scholar 10[10a] N. Yoda, P. Yates, Tetrahedron 1963 19, 849–853. 10.1016/S0040-4020(01)99337-8 Web of Science®Google Scholar[10b] – V. M. Micovic, S. Stojcic, S. Mladenovic, M. Stefanovic, Tetrahedron Lett. 1965 1559–1563. Google Scholar[10c] – D. Gange, P. Magnus, L. Bass, E. V. Arnold, J. Clardy, J. Am. Chem. Soc. 1980 102, 2134–2135. 10.1021/ja00526a084 CASWeb of Science®Google Scholar[10d] – F. Nicotra, L. Panza, G. Russo, J. Org. Chem. 1987 52, 5627–5630. 10.1021/jo00234a024 CASWeb of Science®Google Scholar[10e] – J. W. Jaroszewski, M. G. Ettlinger, J. Org. Chem. 1989 54, 1506–1518. 10.1021/jo00268a007 CASWeb of Science®Google Scholar[10f] – B. B. Jarvis, K. M. Wells, T. Kaufmann, Synthesis 1990 1079–1082. Google Scholar[10g] – H. Abdel-Rahman, J. P. Adams, A. L. Boyes, M. J. Kelly, R. B. Lamont, D. J. Mansfield, P. A. Procopiou, S. M. Roberts, D. H. Slee, N. S. Watson, J. Chem. Soc., Perkin Trans. 1 1994 1259–1261. Google Scholar[10h] – J. Lee, V. E. Marquez, N. E. Lewin, P. M. Blumberg, Synlett 1994 206–208. Google Scholar[10i] – J. Lee, S. Wang, G. W. A. Milne, R. Sharma, N. E. Lewin, P. Blumberg, V. E. Marquez, J. Med. Chem. 1996 39, 29–35. 10.1021/jm950277n CASPubMedWeb of Science®Google Scholar[10j] – S. Hormuth, W. Schade, H.-U. Reissig, Liebigs Ann. 1996 2001–2006. Google Scholar[10k] – P. Nielsen, K. Larsen, J. Wengel, Acta Chem. Scand. 1996 50, 1030–1035. 10.3891/acta.chem.scand.50-1030 CASWeb of Science®Google Scholar[10l] – T. Ueki, D. Ichinari, K. Yoshihara, Y. Morimoto, T. Kinoshita, Tetrahedron Lett. 1998 39, 667–668. 10.1016/S0040-4039(97)10713-4 CASWeb of Science®Google Scholar[10m] – S. F. Martin, S. Naito, J. Org. Chem. 1998 63, 7592–7593. 10.1021/jo981684k CASWeb of Science®Google Scholar 11[11a] M. S. Henderson, R. McCrindle, J. Chem. Soc. C 1969 2014–2015. Google Scholar[11b] – Y. Asaka, T. Kamikawa, T. Kubota, Chem. Lett. 1973 937–940. Google Scholar[11c] – G. Savona, F. Piozzi, L. M. Aránguez, B. Rodríguez, Phytochemistry 1979 18, 859–860. 10.1016/0031-9422(79)80029-1 CASWeb of Science®Google Scholar[11d] – O. Prakash, D. S. Bhakuni, R. S. Kapil, G. S. R. Subba Rao, B. Ravindranath, J. Chem. Soc., Perkin Trans. 1 1979 1305–1308. Google Scholar[11e] – J. López de Lerma, S. García-Blanco, J. G. Rodríguez, Tetrahedron Lett. 1980 21, 1273–1274. 10.1016/S0040-4039(00)71390-6 Web of Science®Google Scholar[11f] – G. Savona, M. Bruno, B. Rodríguez, Phytochemistry 1984 23, 191–192. 10.1016/0031-9422(84)83109-X CASWeb of Science®Google Scholar[11g] – G. Savona, M. Bruno, O. Servettaz, B. Rodríguez, Phytochemistry 1984 23, 2958–2959. 10.1016/0031-9422(84)83053-8 CASWeb of Science®Google Scholar[11h] – P. M. Hon, E. S. Wang, S. K. M. Lam, Y. M. Choy, C. M. Lee, H. N. C. Wong, Phytochemistry 1993 33, 639–641. 10.1016/0031-9422(93)85464-3 CASWeb of Science®Google Scholar 12[12a] W. S. Rapson, J. Chem. Soc. 1938 282–286. Google Scholar[12b] – W. S. Rapson, J. Chem. Soc. 1939 1085–1089. Google Scholar[12c] – W. S. Rapson, J. Chem. Soc. 1940 1271–1274. Google Scholar[12d] – R. D. Diamond, D. Rogers, Proc. Chem. Soc. 1964 63–63. Google Scholar[12e] – G. W. Perold, K. G. R. Pachler, J. Chem. Soc. C 1966 1918–1923. Google Scholar[12f] – A. W. Murray, R. W. Bradshaw, Tetrahedron 1967 23, 1929–1937. 10.1016/S0040-4020(01)82596-5 CASWeb of Science®Google Scholar[12g] – A. W. Murray, R. W. Bradshaw, Tetrahedron 1967 23, 2333–2338. 10.1016/0040-4020(67)80069-3 CASWeb of Science®Google Scholar 13 G. W. Perold, A. J. Hodgkinson, A. S. Howard, P. E. J. Kruger, J. Chem. Soc., Perkin Trans. 1 1972 2457–2460. Google Scholar 14 J. B. Lowry, J. B. McAlpine, N. V. Riggs, Aust. J. Chem. 1975 28, 109–118. 10.1071/CH9750109 CASWeb of Science®Google Scholar 15 G. W. Perold, L. Carlton, A. S. Howard, J. P. Michael, J. Chem. Soc., Perkin Trans. 1 1988 881–884. Google Scholar 16[16a] M. Tada, M. Nagai, C. Okumura, Y. Osano, T. Matsuzaki, Chem. Lett. 1989 683–686. Google Scholar[16b] – Y. Aramaki, K. Chiba, M. Tada, Phytochemistry 1995 38, 1419–1421. 10.1016/0031-9422(94)00862-N CASWeb of Science®Google Scholar 17[17a] H. Itazaki, K. Nagashima, Y. Kawamura, K. Matsumoto, H. Nakai, Y. Terui, J. Antibiot. 1992 45, 38–49. 10.7164/antibiotics.45.38 CASPubMedWeb of Science®Google Scholar[17b] – K. Tanaka, H. Itazaki, T. Yoshida, J. Antibiot. 1992 45, 50–55. 10.7164/antibiotics.45.50 CASPubMedWeb of Science®Google Scholar 18[18a] E. S. Wang, B. S. Luo, T. C. W. Mak, Y. M. Choy, H. N. C. Wong, Tetrahedron Lett. 1994 35, 7401–7404. 10.1016/0040-4039(94)85325-8 CASWeb of Science®Google Scholar[18b] – E. S. Wang, Y. M. Choy, H. N. C. Wong, Tetrahedron 1996 52, 12137–12158. 10.1016/0040-4020(96)00705-3 CASWeb of Science®Google Scholar 19 E. S. Wang, J. C. Shen, H. N. C. Wong, Chem. J. Chin. Univ. 1997 18, 1054–1056. CASWeb of Science®Google Scholar 20 L. Weiler, J. Am. Chem. Soc. 1970 92, 6702–6704. 10.1021/ja00725a088 CASWeb of Science®Google Scholar 21 D. J. Chadwick, C. Willbe, J. Chem. Soc., Perkin Trans. 1 1977 887–893. Google Scholar 22[22a] I. Kuwajima, H. Urabe, Tetrahedron Lett. 1981 22, 5191–5194. 10.1016/S0040-4039(01)92456-6 CASWeb of Science®Google Scholar[22b] – D. Goldsmith, D. Liotta, M. Saindane, L. Waykole, P. Bowen, Tetrahedron Lett. 1983 24, 5835–5838. 10.1016/S0040-4039(00)94214-X CASWeb of Science®Google Scholar[22c] – S. P. Tanis, D. B. Head, Tetrahedron Lett. 1984 25, 4451–4454. 10.1016/S0040-4039(01)81464-7 CASWeb of Science®Google Scholar 23[23a] E. W. Yankee, U. Axen, G. L. Bundy, J. Am. Chem. Soc. 1974 96, 5865–5876. 10.1021/ja00825a027 CASPubMedWeb of Science®Google Scholar[23b] – For a recent review on the chemistry of butenolides, see: I. Collins, J. Chem. Soc., Perkin Trans. 1 1998 1869–1888. Google Scholar 24 H. Takahata, Y. Banba, M. Tajima, T. Momose, J. Org. Chem. 1991 56, 240–245. 10.1021/jo00001a045 CASWeb of Science®Google Scholar 25 G. A. Kraus, K. A. Frazier, B. D. Roth, M. M. Taschner, K. Neuenschwander, J. Org. Chem. 1981 46, 2417–2419. 10.1021/jo00324a050 CASWeb of Science®Google Scholar 26 C. Brückner, H.-U. Reissig, J. Chem. Soc., Chem. Commun. 1985 1512–1513. Google Scholar 27 S. V. Ley, D. Santafianos, W. M. Blaney, M. S. J. Simmonds, Tetrahedron Lett. 1987 28, 221–224. 10.1016/S0040-4039(00)95691-0 CASWeb of Science®Google Scholar 28[28a] The total synthesis of (±)-hispanolone (2): W. S. Cheung, H. N. C. Wong, Tetrahedron Lett. 1998 39, 6521–6524. 10.1016/S0040-4039(98)01408-7 CASWeb of Science®Google Scholar[28b] – The total synthesis of (–)-hispanolone (2): W. S. Cheung, H. N. C. Wong, manuscript in preparation. See also W. S. Cheung, Ph. D. thesis, The Chinese University of Hong Kong, 1998. Google Scholar 29[29a] F. Sondheimer, D. Elad, J. Am. Chem. Soc. 1957 79, 5542–5546. 10.1021/ja01577a057 CASWeb of Science®Google Scholar[29b] – M. Ihara, M. Toyota, K. Fukumoto, J. Chem. Soc., Perkin Trans. 1 1986 2151–2161. Google Scholar 30 J. Gutzwiller, P. Buckschacher, A. Fürst, Synthesis 1977 167–168. Google Scholar 31 I. Kuwajima, E. Nakamura, J. Am. Chem. Soc. 1975 97, 3257–3258. 10.1021/ja00844a076 CASWeb of Science®Google Scholar 32 M. Saunders, G. W. Cline, J. Am. Chem. Soc. 1990 112, 3955–3963. 10.1021/ja00166a036 CASWeb of Science®Google Scholar 33[33a] W. G. Dauben, D. M. Michno, J. Org. Chem. 1977 42, 682–685. 10.1021/jo00424a023 CASWeb of Science®Google Scholar[33b] – P. Sundararaman, W. Herz, J. Org. Chem. 1977 42, 813–819. 10.1021/jo00425a009 CASWeb of Science®Google Scholar 34[34a] K. Sonogashira, Y. Tohka, N. Hagihara, Tetrahedron Lett. 1975 16, 4467–4470. 10.1016/S0040-4039(00)91094-3 Web of Science®Google Scholar[34b] – R. Rossi, A. Carpita, F. Bellina, Org. Prep. Proced. Int. 1995 27, 129–160. 10.1080/00304949509458449 CASWeb of Science®Google Scholar[34c] – K. Sonogashira, in Comprehensive Organic Synthesis, vol. 3 (Ed.: G. Pattenden), Pergamon, Oxford, 1991 pp. 521–549. 10.1016/B978-0-08-052349-1.00071-8 Google Scholar 35 D. A. Shepherd, R. A. Donia, J. A. Campbell, B. A. Johnson, R. P. Holysz, G. Slomp, J. E. Stafford, Jr., R. L. Pederson, A. C. Ott, J. Am. Chem. Soc. 1955 77, 1212–1215. 10.1021/ja01610a036 CASWeb of Science®Google Scholar 36[36a] M. C. Garcia-Alvarez, L. Pérez-Sirvent, B. Rodríguez, M. Bruno, G. Savona, An. Quim., Ser. C 1981 77, 316–319. CASGoogle Scholar[36b] – L. Pérez-Sirvent, M. C. Garcia-Alvarez, B. Rodríguez, M. Bruno, G. Savona, F. Piozzi, An. Quim., Ser. C 1981 77, 324–329. CASGoogle Scholar[36c] – L. Pérez-Sirvent, M. C. Garcia-Alvarez, M. A. Balestrieri, B. Rodríguez, G. Savona, An. Quim., Ser. C 1981 77, 330–334. CASGoogle Scholar[36d] – L. Pérez-Sirvent, B. Rodríguez, G. Savona, O. Servettaz, Phytochemistry 1983 22, 527–530. 10.1016/0031-9422(83)83038-6 CASWeb of Science®Google Scholar[36e] – J. A. Hueso-Rodríguez, G. Dominguez, B. Rodríguez, An. Quim., Ser. C 1988 84, 215–218. CASGoogle Scholar 37 E. Weitz, A. Scheffer, Ber. Dtsch. Chem. Ges. 1921 54B, 2327–2344. 10.1002/cber.19210540922 CASGoogle Scholar 38[38a] J.-L. Luche, J. Am. Chem. Soc. 1978 100, 2226–2227. 10.1021/ja00475a040 CASWeb of Science®Google Scholar[38b] – J.-L. Luche, L. Rodriguez-Hahn, P. Crabbé, J. Chem. Soc., Chem. Commun. 1978 601–602. Google Scholar 39 S. J. Danishefsky, J. J. Masters, W. B. Young, J. T. Link, L. B. Snyder, T. V. Magee, D. K. Jung, R. C. A. Isaacs, W. G. Bornmann, C. A. Alaimo, C. A. Coburn, M. J. Di Grandi, J. Am. Chem. Soc. 1996 118, 2843–2859. 10.1021/ja952692a CASWeb of Science®Google Scholar 40 P. Ma, V. S. Martin, S. Masamune, K. B. Sharpless, S. M. Viti, J. Org. Chem. 1982 47, 1378–1380. 10.1021/jo00346a052 CASWeb of Science®Google Scholar 41 E. S. Wang, J. C. Shen, H. N. C. Wong, Chem. J. Chin. Univ. 1997 18, 1648–1650. CASWeb of Science®Google Scholar 42 F. Kienzle, J. Stadlwieser, W. Rank, P. Schönholzer, Helv. Chim. Acta 1990 73, 1108–1138. 10.1002/hlca.19900730433 CASWeb of Science®Google Scholar 43 Y. L. Lin, Y. H. Kuo, Chem. Pharm. Bull. 1989 37, 582–585. 10.1248/cpb.37.582 CASWeb of Science®Google Scholar 44[44a] P. Yu, Y. Yang, Z. Y. Zhang, T. C. W. Mak, H. N. C. Wong, J. Org. Chem. 1997 62, 6359–6366. 10.1021/jo970476+ CASWeb of Science®Google Scholar[44b] – P. Yu, H. N. C. Wong, unpublished results. Google Scholar 45[45a] B. P. Maliakel, W. Schmid, Tetrahedron Lett. 1992 33, 3297–3300. 10.1016/S0040-4039(00)92071-9 CASWeb of Science®Google Scholar[45b] – B. P. Maliakel, W. Schmid, J. Carbohydr. Chem. 1993 12, 415–424. 10.1080/07328309308019397 CASWeb of Science®Google Scholar 46 R. Di Florio, M. Rizzacasa, J. Org. Chem. 1998 63, 8595–8598. 10.1021/jo9813336 CASWeb of Science®Google Scholar 47[47a] Y. Yang, H. N. C. Wong, J. Chem. Soc., Chem. Commun. 1992 656–658. Google Scholar[47b] – Y. Yang, H. N. C. Wong, Tetrahedron 1994 50, 9583–9608. 10.1016/S0040-4020(01)85528-9 CASWeb of Science®Google Scholar 48 P. Yu, Ph. D. Thesis, The Chinese University of Hong Kong, 1997. Google Scholar 49[49a] O. Diels, K. Alder, E. Naujoks, Ber. Dtsch. Chem. Ges. 1929 62B, 554–562. 10.1002/cber.19290620318 CASGoogle Scholar[49b] – J. A. Berson, R. Swidler, J. Am. Chem. Soc. 1953 75, 1721–1726. 10.1021/ja01103a060 CASWeb of Science®Google Scholar[49c] – Y. Fukuyama, Y. Kawashima, T. Miwa, T. Tokoroyama, Synthesis 1974 443–444. Google Scholar[49d] – M. W. Lee, W. C. Herndon, J. Org. Chem. 1978 43, 518–518. 10.1021/jo00397a031 CASWeb of Science®Google Scholar 50[50a] R. W. Kierstead, A. Faraone, F. Mennona, J. Mullin, R. W. Guthrie, H. Crowley, B. Simko, L. C. Blaber, J. Med. Chem. 1983 26, 1561–1569. 10.1021/jm00365a004 CASPubMedWeb of Science®Google Scholar[50b] – D. Y. Jackson, Synth. Commun. 1988 18, 337–341. 10.1080/00397918808063996 CASWeb of Science®Google Scholar 51 J. Jurczak, S. Pikul, J. Raczko, Pol. J. Chem. 1987 61, 645–647. CASWeb of Science®Google Scholar 52[52a] J. L. Marco, J. A. Hueso-Rodríguez, Tetrahedron Lett. 1988 29, 2459–2462. 10.1016/S0040-4039(00)87907-1 CASPubMedWeb of Science®Google Scholar[52b] – K. Suzuki, Y. Yuki, T. Mukaiyama, Chem. Lett. 1981 1529–1532. Google Scholar[52c] – K. Dziewiszek, M. Chmielewski, A. Zamojski, Carbohydr. Res. 1982 104, C1–3. 10.1016/S0008-6215(00)82228-4 CASWeb of Science®Google Scholar 53[53a] J. C. Collins, W. W. Hess, F. J. Frank, Tetrahedron Lett. 1968 3363–3366. Google Scholar[53b] – E. J. Corey, G. Schmidt, Tetrahedron Lett. 1979 5, 399–402. 10.1016/S0040-4039(01)93515-4 CASGoogle Scholar 54[54a] M. M. Midland, J. Org. Chem. 1975 40, 2250–2252. 10.1021/jo00903a029 CASWeb of Science®Google Scholar[54b] – S. Byström, H.-E. Högberg, T. Norin, Tetrahedron 1981 37, 2249–2254. 10.1016/S0040-4020(01)97980-3 Web of Science®Google Scholar[54c] – R. Jacobson, R. J. Taylor, H. J. Williams, L. R. Smith, J. Org. Chem. 1982 47, 3140–3142. 10.1021/jo00137a020 CASWeb of Science®Google Scholar[54d] – H.-E. Högberg, E. Hedenström, R. Isaksson, A.-B. Wassgren, Acta Chem. Scand., Ser. B 1987 B41, 694–697. 10.3891/acta.chem.scand.41b-0694 CASWeb of Science®Google Scholar[54e] – E. Calzada, C. A. Clarke, C. Roussin-Bouchard, R. H. Wightman, J. Chem. Soc., Perkin Trans. 1 1995 517–518. Google Scholar 55[55a] C. Mukai, S. M. Moharram, M. Hanaoka, Tetrahedron Lett. 1997 38, 2511–2512. 10.1016/S0040-4039(97)00380-8 CASWeb of Science®Google Scholar[55b] – C. Mukai, S. M. Moharram, S. Azukizawa, M. Hanaoka, J. Org. Chem. 1997 62, 8095–8103. 10.1021/jo9711089 CASPubMedWeb of Science®Google Scholar 56 T. Honda, H. Mizutani, K. Kanai, J. Org. Chem. 1996 61, 9374–9378. 10.1021/jo961362l CASWeb of Science®Google Scholar 57 G. Stork, T. Takahashi, J. Am. Chem. Soc. 1977 99, 1275–1276. 10.1021/ja00446a055 CASPubMedWeb of Science®Google Scholar 58 G. R. Kieczykowski, R. H. Schlessinger, J. Am. Chem. Soc. 1978 100, 1938–1940. 10.1021/ja00474a056 CASWeb of Science®Google Scholar 59 P. Yu, Q. G. Wang, T. C. W. Mak, H. N. C. Wong, Tetrahedron 1998 54, 1783–1788. 10.1016/S0040-4020(97)10401-X CASWeb of Science®Google Scholar 60[60a] J. L. Wood, S. Jeong, A. Salcedo, J. Jenkins, J. Org. Chem. 1995 60, 286–287. 10.1021/jo00107a001 CASWeb of Science®Google Scholar[60b] – S. Kuwahara, M. Moriguchi, K. Miyagawa, M. Konno, O. Kodama, Tetrahedron Lett. 1995 36, 3201–3202. 10.1016/0040-4039(95)00512-B CASWeb of Science®Google Scholar[60c] – S. Kuwahara, M. Moriguchi, K. Miyagawa, M. Konno, O. Kodama, Tetrahedron 1995 51, 8809–8814. 10.1016/0040-4020(95)00488-T CASWeb of Science®Google Scholar[60d] – J. P. Henschke, R. W. Rickards, Tetrahedron Lett. 1996 37, 3557–3560. 10.1016/0040-4039(96)00611-9 CASPubMedWeb of Science®Google Scholar[60e] – J. Ishihara, T. Sugimoto, A. Murai, Synlett 1996 335–336. Google Scholar[60f] – J. Ishihara, T. Sugimoto, A. Murai, Tetrahedron 1997 53, 16029–16040. 10.1016/S0040-4020(97)10062-X CASWeb of Science®Google Scholar[60g] – C.-M. Zeng, S. L. Midland, N. T. Keen, J. J. Sims, J. Org. Chem. 1997 62, 4780–4784. 10.1021/jo970461b CASWeb of Science®Google Scholar[60h] – H. Yoda, M. Kawauchi, K. Takabe, K. Hosoya, Heterocycles 1997 45, 1895–1898. 10.3987/COM-97-7926 CASWeb of Science®Google Scholar 61[61a] C. W. Jefford, D. Jaggi, J. Boukouvalas, J. Chem. Soc., Chem. Commun. 1988 1595–1596. Google Scholar[61b] – S. E. Drewes, G. H. P. Roos, Tetrahedron 1988 44, 4653–4670. 10.1016/S0040-4020(01)86168-8 CASWeb of Science®Google Scholar[61c] – D. Basavaiah, P. D. Rao, R. S. Hyma, Tetrahedron 1996 52, 8001–8062. 10.1016/0040-4020(96)00154-8 CASWeb of Science®Google Scholar[61d] – L. J. Brzezinski, S. Rafel, J. W. Leahy, J. Am. Chem. Soc. 1997 119, 4317–4318. 10.1021/ja970079g CASWeb of Science®Google Scholar[61e] – S. Rafel, J. W. Leahy, J. Org. Chem. 1997 62, 1521–1522. 10.1021/jo961224w CASWeb of Science®Google Scholar Citing Literature Volume1999, Issue8August 1999Pages 1757-1765 ReferencesRelatedInformation
Referência(s)