ECOTOXICOLOGICAL RELEVANCE OF ATRAZINE IN AQUATIC SYSTEMS
1993; Wiley; Volume: 12; Issue: 10 Linguagem: Inglês
10.1897/1552-8618(1993)12[1865
ISSN1552-8618
Autores Tópico(s)Environmental Toxicology and Ecotoxicology
ResumoEnvironmental Toxicology and ChemistryVolume 12, Issue 10 p. 1865-1881 Article Ecotoxicological relevance of atrazine in aquatic systems Wilfried Huber, Wilfried Huber Department of Plant Systematics and Ecophysiology, Technical University of Munich-Weihenstephan, D-8050 Freising 12, GermanySearch for more papers by this author Wilfried Huber, Wilfried Huber Department of Plant Systematics and Ecophysiology, Technical University of Munich-Weihenstephan, D-8050 Freising 12, GermanySearch for more papers by this author First published: October 1993 https://doi.org/10.1002/etc.5620121014Citations: 130AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract In this report an attempt is made to outline the ecotoxicological role of atrazine in aquatic ecosystems. A brief discussion of the chemistry and metabolism of atrazine is followed by a discussion of the occurrence of this herbicide in the environment. Peak levels for occurrence of atrazine in surface water range from up to 90 μg/L for flowing water to 2 μg/L for standing water. In reality, most values are significantly lower. As with ground water, in which atrazine has also been detected, great caution must be taken when interpreting data on the presence of atrazine in the environment. Atrazine is taken up by nearly all members of the aquatic biocenoses, but in many cases it is also quickly eliminated. The importance of these processes is discussed. The ecotoxicological effects of atrazine on producers, consumers, and decomposers as well as on ecosystem functions first become observable at levels of 20 μg/L or more; the changes are not lasting, even when studied over long periods. Indirect effects are also taken into account in the definition of the threshold value. Deviations from the ecotoxicological threshold value indicated by higher or lower toxi-cological threshold values in the case of individual organisms are also evaluated. Furthermore, the threshold value is compared with the environmental concern level (EEC) of atrazine. The final assessment is that although atrazine may be potentially hazardous to the environment, the level of hazard depends on the concentration and degree of exposure. It can be assumed that at concentrations of up to 20 μg/L, atrazine does not cause any permanent damage to aquatic ecosystems. References 1 Okkerman, E.J., J.V.D. Plasche, W. Sloff, C.J. Van Leeuwen and J.H. Canton. 1991. Ecotoxicological effects assessment: A comparison of several extrapolation procedures. Ecotoxicol. Environ. Saf. 21: 182–193. 10.1016/0147-6513(91)90020-P CASPubMedWeb of Science®Google Scholar 2 Cairns, J., Jr. 1986. The myth of the most sensitive species. Bioscience 36: 670–672. 10.2307/1310388 Web of Science®Google Scholar 3 Cairns, J., Jr. and B.R. Niederlehner. 1987. Problems associated with selecting the most sensitive species for toxicity testing. Hydrobiologia 153: 87–94. 10.1007/BF00005507 Web of Science®Google Scholar 4 Carlson, A.R., H. Nelson and D. Hammermeister. 1986. Development and validation of site-specific water quality criteria for copper. Environ. Toxicol. Chem. 5: 997–1012. 10.1002/etc.5620051108 CASWeb of Science®Google Scholar 5 Mount, D.I. 1985. Scientific problems in using multi-species toxicity tests for regulatory purposes. In J. Cairns, ed., Multispecies Toxicity Testing. Per-gamon, Elmsford, NY, pp. 13–18. Google Scholar 6 Levin, S.A. and K.D. Kimball. 1984. New perspectives in ecotoxicology. Environ. Manage. 8: 375–442. 10.1007/BF01871807 Web of Science®Google Scholar 7 Van Leeuwen, C.J., P.S. Griffioen, W.H.A. Vergouw and H. Maas-Diepeveen. 1985. Differences in susceptibility of early life stages of rainbow trout (Salmo gairdneri) to environmental pollutants. Aquat. Toxicol. 7: 59–78. 10.1016/0166-445X(85)90036-0 CASWeb of Science®Google Scholar 8 Deneer, J.W. 1988. The toxicity of aquatic pollutants: QSARs and mixture toxicity studies. Ph.D. thesis. University of Utrecht, Utrecht, The Netherlands. Google Scholar 9 Nagel, R. 1990. Ökotoxikologie—eine junge Wissen-schaft mit hohem Anspruch. Biol. Unserer Zeit 20: 299–304. 10.1002/biuz.19900200615 CASGoogle Scholar 10 Van Straalen, N.M. and C.A.J. Denneman. 1989. Ecotoxicological evaluation of soil quality criteria. Ecotoxicol. Environ. Saf. 18: 241–251. 10.1016/0147-6513(89)90018-3 CASPubMedWeb of Science®Google Scholar 11 Mount, D.L. 1987. Editorial: A changing profession. Environ. Toxicol. Chem. 6: 83. 10.1002/etc.5620060201 Web of Science®Google Scholar 12 Huber, W. 1992. Limnische Modellsysteme und Freilanduntersuchungen, Modellokosysteme. In H. Becker, F. Döpke, E. Dorn, R. Heitefuß, B. Holschulte and H. Köpp, eds., Beurteilung von Pflanzen-schutzmitteln in Aquatischen Ökosystemen. Verlag Chemie, Weinheim, Germany, pp. 119–133. Web of Science®Google Scholar 13 Cairns, J., Jr. 1988. Putting the eco in ecotoxicology. Regul. Toxicol. Pharmacol. 8: 226–238. 10.1016/0273-2300(88)90031-1 PubMedWeb of Science®Google Scholar 14 Ebert, E. and S.W. Dumford. 1976. Effects of triazine herbicides on the physiology of plants. Residue Rev. 65: 2–103. Google Scholar 15 Knuesli, E., D. Berrer, G. Depuis and H. Esser. 1969. s-Triazines. In P.C. Kearny and D.D. Kaufman, eds., Degradation of Herbicides. Marcel Dekker, New York, NY, pp. 51–70. Google Scholar 16 Stratton, G.W. 1984. Effects of the herbicide atrazine and its degradation products, alone and in combination, on phototrophic microorganisms. Arch. Environ. Contam. Toxicol. 13: 35–42. 10.1007/BF01055644 CASWeb of Science®Google Scholar 17 Schiavon, M. 1988. Studies of the leaching of atrazine, of its chlorinated derivates, and of hydroxyat-razine from soil using 14C ring-labeled compounds under outdoor conditions. Ecotoxicol. Environ. Saf. 15: 46–54. 10.1016/0147-6513(88)90041-3 CASPubMedWeb of Science®Google Scholar 18 Schiavon, M. 1988. Studies of the movement and the formation of bound residues of atrazine, of its chlorinated derivates, and of hydroxyatrazine in soil using 14C ring-labelled compounds under outdoor conditions. Ecotoxicol. Environ. Saf. 15: 55–61. 10.1016/0147-6513(88)90042-5 CASPubMedWeb of Science®Google Scholar 19 DeNoyelles, E., W.D. Kettle and D.E. Sinn. 1982. The responses of plankton communities in experimental ponds to atrazine, the most heavily used pesticide in the United States. Ecology 63: 1285–1293. 10.2307/1938856 CASWeb of Science®Google Scholar 20 Wolf, D.C. and J.P. Martin. 1975. Microbial decomposition of ring-14C atrazine, cyanuric acid, and 2-chloro-4,6-diamino-s-triazine. J. Environ. Qual. 4: 134–139. 10.2134/jeq1975.00472425000400010032x CASWeb of Science®Google Scholar 21 Klaine, S.J. 1987. Biotic and abiotic degradation of atrazine and three of its metabolites in a west Tennessee soil. Report TX-431. Memphis State University, Memphis, TN. Google Scholar 22 Moorhead, D.L. and R.J. Kosinski. 1986. Effect of atrazine on the productivity of artificial stream algal communities. Bull. Environ. Contam. Toxicol. 37: 330–336. 10.1007/BF01607769 CASPubMedWeb of Science®Google Scholar 23 Yoo, J.Y. and K.R. Solomon. 1981. Persistence of permethrin, atrazine and methoxychlor in a natural lake system. Can. Tech. Rep. Fish. Aquat. Sci. 1151: 164–167. Google Scholar 24 Huber, W., F.-J. Zieris, K.E. Neugebaur and R. Draxl. 1988. Erarbeitung von Kriterien fur die Beurteilung des Umweltrisikos durch potentiell wassergefahr-dende Pflanzenschutzmittel-aquatische Modellokosysteme im Freiland. Forschungsbericht an das Umweltbundesamt (UBA) 88-126050001/01. Tech-nische Universität München-Weihenstephan, Freis-ing, West Germany. Google Scholar 25 Burkhard, N. and J.A. Guth. 1981. Chemical hydrolysis of 2-chloro-4,6-(bisalkyl-amino)-1,3,5-triazine herbicides and their breakdown in soil under the influence of adsorption. Pestic. Sci. 12: 45–52. 10.1002/ps.2780120107 CASWeb of Science®Google Scholar 26 Burkhard, N. and J.A. Guth. 1976. Photodegrada-tion of atrazine, atraton and ametryne in aqueous solution with acetone as a photosensitizer. Pestic. Sci. 7: 65–71. 10.1002/ps.2780070110 CASWeb of Science®Google Scholar 27 Jones, T.W., W.M. Kemp, J.C. Stevenson and J.C. Means. 1982. Degradation of atrazine in estuarine water/sediment systems and soils. J. Environ. Qual. 11: 632–638. 10.2134/jeq1982.00472425001100040015x CASWeb of Science®Google Scholar 28 Glotfelty, D.E., A.W. Taylor, A.R. Isensee, J. Jersey and S. Glenn. 1984. Atrazine and simazine movement to Wye River estuary. J. Environ. Qual. 13: 115–121. 10.2134/jeq1984.00472425001300010021x CASWeb of Science®Google Scholar 29 Isensee, A.R. 1984. Persistence and movement of atrazine in a salt marsh sediment microecosystem. Bull. Environ. Contam. Toxicol. 39: 516–523. 10.1007/BF01688319 Google Scholar 30 Premazzi, G. and R. Stecchi. 1990. Evaluation of the impact of atrazine on the aquatic environment. EU 12569. Review. Commission of the European Communities. Brussels, Belgium. Web of Science®Google Scholar 31 Winkelmann, D.A. and S.J. Klaine. 1991. Degradation and bound residue formation of atrazine in a western Tennessee soil. Environ. Toxicol. Chem. 10: 335–345. 10.1002/etc.5620100306 CASWeb of Science®Google Scholar 32 Winkelmann, D.A. and S.J. Klaine. 1991. Degradation and bound residue formation of four atrazine metabolites, deethylatrazine, deisopropylatrazine, dealkyl-atrazine and hydroxyatrazine, in a western Tennessee soil. Environ. Toxicol. Chem. 10: 347–354. 10.1002/etc.5620100307 CASWeb of Science®Google Scholar 33 Eisler, R. 1989. Atrazine hazards to fish, wildlife, and invertebrates: A synoptic review. Contaminant Hazard Reviews Report 18. Biological Report 85. U. S. Fish and Wildlife Service, Washington, DC. Google Scholar 34 Dao, T.H., T.L. Lavy and R.C. Sorensen. 1979. Atrazine degradation and residue distribution in soil. Soil Sci. Soc. Am. J. 43: 1129–1134. 10.2136/sssaj1979.03615995004300060013x CASWeb of Science®Google Scholar 35 Frank, R. and G.J. Sirons. 1979. Atrazine: Its use in corn production and its loss to stream waters in southern Ontario, 1975-1977. Sci. Total Environ. 12: 223–239. 10.1016/0048-9697(79)90088-3 CASWeb of Science®Google Scholar 36 Guth, J.A. and W.D. Hörmann. 1987. Problematik und Relevanz von Pflanzenschutzmittel-Spuren im Grund(Trink)-Wasser. In G. Milde und P. Friesel, eds., Grundwasserbeeinflussung durch Pflanzen-schutzmittel. Schriftenreihe des Vereins fur Wasser-, Boden-und Lufthygiene 68. Gustav-Fischer-Verlag, Stuttgart, West Germany, pp. 91–106. Google Scholar 37 Deutsche Forschungsgemeinschaft (DFG). 1990. Pflanzenschutzmittel im Trinkwasser. Mitteilung 16 der Kommission fur Pflanzenschutz-, Pflanzenbe-handlungs- und Vorratsschutzmittel der DFG, Bonn, Germany. Google Scholar 38 Jurgensen, T.A. and K.D. Hoagland. 1990. Effects of short-term pulses of atrazine on attached algal communities in a small stream. Arch. Environ. Contam. Toxicol. 19: 617–623. 10.1007/BF01059084 CASWeb of Science®Google Scholar 39 Zullei-Seibert, N. 1990. Vorkommen und Nachweis-barkeit von Pflanzenbehandlungs- und Schädlingsbe-kämpfungsmittel-Wirkstoffen in Roh- und Trinkwäs-sern der Bundesrepublik Deutschland. Dortmunder Beiträge zur Wasserforschung. Veröffentlichung 39 des Instituts für Wasserforschung GmbH Dortmund und der Dortmunder Stadtwerke AG, Dortmund, Germany. Google Scholar 40 Braun, F., W. Schüssler, M. Wanzinger and R. Wehrle-von Borzyskowski. 1990. Neue Untersuchungen zur Analytik und Verbreitung von Polychlorbiphenylen (PCB) und Pflanzenbehandlungsmitteln. Bayer Lan-desanstalt für Wasserforschung, München, Germany. Google Scholar 41 Hoermann, W.D., J.C. Tournayre and H. Egli. 1979. Triazine herbicide residues in central European streams. Pestic. Monit. J. 13: 128–135. PubMedWeb of Science®Google Scholar 42 Waldron, A.C. 1974. Pesticide movement from cropland into Lake Erie. EPA 660/2-74-03. Final Report. U. S. Environmental Protection Agency, Athens, GA. Google Scholar 43 Hindelang, D. 1989. Limnologische Untersuchungen zweier Kiesweiher im Landkreis Freising unter beson-derer Berücksichtigung der Atrazinbelastung. M. A. thesis. Technische Universität München-Weihen-stephan, Freising, West Germany. Google Scholar 44 Glotfelty, D.E., J.N. Seiber and L.A. Lilledahl. 1987. Pesticides in fog. Nature (Lond.) 325: 602–605. 10.1038/325602a0 CASPubMedWeb of Science®Google Scholar 45 Elling, W., S.J. Huber, B. Bankstahl and B. Hock. 1978. Atmospheric transport of atrazine: A simple device for its detection. Environ. Pollut. 48: 77–82. 10.1016/0269-7491(87)90087-X Web of Science®Google Scholar 46 Remmler, F. 1990. Einflusse von Meßstellenausbau und Pumpenmaterialien auf die Beschaffenheit einer Wasserprobe. Mitteilungen 20. Deutscher Verband für Wasserwirtschaft und Kulturbau e.V., Bonn, Germany. Google Scholar 47 Keith, L.M. 1988. Principles of Environmental Sampling. American Chemical Society, Washington, DC. Google Scholar 48 Collins, A.G. and A.I. Johnson. 1988. Groundwater Contamination: Field Methods. STP 963. American Society for Testing and Materials, Philadelphia, PA. 10.1520/STP963-EB Google Scholar 49 U. S. Environmental Protection Agency. 1990. A national survey of pesticides in drinking water wells. EPA 579/9-90-015. Phase I Report. Washington, DC. Google Scholar 50 Industrieverband Agrar (IPS). 1987. Pflanzenschutz-wirkstoffe und Trinkwasser. Industrieverband Agrar e.V., Frankfurt am Main, West Germany. Google Scholar 51 Amann, W., M. Schuster, W. Gilsbach, H. Kees and A. Rappel. 1989. Auftreten von Pflanzenschutzmit-teln im Grundwasser in Bayern. In G. Milde and U. Müller-Wegener, eds., Pflanzenschutzmittel und Grundwasser. Schriftenr. d. Vereins für Wasser-, Boden- und Lufthygiene. Bd. 79. Gustav-Fischer-Verlag, Stuttgart, West Germany, pp. 159–182. Google Scholar 52 Loch, J.P.G. and B. Verdam. 1989. Pesticide residues in groundwater in The Netherlands: State of observations and future directions of research. In G. Milde and U. Muller-Wegener, eds., Pflanzenschutzmittel und Grundwasser. Schriftenr. d. Vereins f. Wasser-, Boden- und Lufthygiene. Bd. 79. Gustav-Fischer-Verlag, Stuttgart, West Germany, pp. 349–364. Google Scholar 53 Gunkel, G. and H. Kausch. 1987. Wirkung, An-reicherung und Weitergabe des Herbizids Atrazin (s-Triazin) in einer aquatischen Nahrungskette. In K. Lillelund, U. de Haar, H.-J. Elster, L. Karbe, I. Schwoerbel and W. Simonis, eds., Bioakkumulation in Nahrungsketten. Verlag Chemie, Weinheim, West Germany, pp. 180–186. Google Scholar 54 Böhm, H.H. 1976. Sorption und Wirkung von Chlor-triazin, Phenoxyfettsäure und Bipyridyliumherbiziden in statischen und kontinuierlichen Kulturen plank-tischer Blau-, Kiesel- und Grünalgen. Ph.D. thesis. Universität Hohenheim, Hohenheim, West Germany. Google Scholar 55 Ellgehausen, H., J.A. Guth and H.O. Esser. 1980. Factors determining the bioaccumulation potential of pesticides in the individual compartments of aquatic food chain. Ecotoxicol. Environ. Saf. 4: 137–154. 10.1016/0147-6513(80)90015-9 Web of Science®Google Scholar 56 Streit, B. 1979. Uptake, accumulation and release of organic pesticides by benthic invertebrates. 3. Distribution of 14C-atrazine and 14C-lindane in an experimental 3-step food chain microcosm. Arch. Hydrobiol. Suppl. 55: 373–400. CASGoogle Scholar 57 Simonis, W. 1987. Primärvorgänge bei der Sorption von Schwermetallen, Insektiziden und Herbiziden in die Anfangsglieder der Nahrungskette. In K. Lillelund, U. de Haar, H.-J. Elster, L. Karbe, I. Schwoerbel and W. Simonis, eds., Bioakkumulation in Nahrungsketten. Verlag Chemie, Weinheim, West Germany, pp. 9–38. Google Scholar 58 Gunkel, G. 1984. Untersuchungen zur ökotox-ikologischen Wirkung eines Herbizids in einem aquatischen Mödellokosystem. 2. Nahrungsketten-probleme und Schadstoffbilanzierung. Arch. Hydrobiol. Suppl. 69: 130–168. CASGoogle Scholar 59 Heisig-Gunkel, G. and G. Gunkel. 1982. Distribution of a herbicide (atrazine, s-triazine) in Daphnia pulicaria: A new approach in determination. Arch. Hydrobiol. Suppl. 59: 359–376. CASGoogle Scholar 60 Streit, B. 1978. Aufnahme, Anreicherung und Freiset-zung organischer Pestizide bei benthischen Inver-tebraten. 1. Reversible Anreicherung von Atrazin aus der wässrigen Phase. Arch. Hydrobiol. 55: 1–23. CASGoogle Scholar 61 Gunkel, G. 1981. Bioaccumulation of a herbicide (atrazine, s-triazine) in the whitefish (Coregonus fera J.): Uptake and distribution of the residue in fish. Arch. Hydrobiol. 59: 252–287. CASGoogle Scholar 62 Schwoerbel, J. 1987. Subletale Wirkungen organischer Schadstoffe auf Evertebraten und Fische. In K. Lillelund, U. de Haar, H.-J. Elster, L. Karbe, I. Schwoerbel and W. Simonis, eds., Bioakkumulation in Nahrungsketten. Verlag Chemie, Weinheim, West Germany, pp. 130–142. Google Scholar 63 Corell, D.L. and T.L. Wu. 1982. Atrazine toxicity to submersed vascular plants in simulated estuarine microcosms. Aquat. Bot. 14: 151–158. 10.1016/0304-3770(82)90094-8 Web of Science®Google Scholar 64 Forney, D.R. and D.E. Davis. 1981. Effects of low concentrations of herbicides on submersed aquatic plants. Weed Sci. 29: 677–685. 10.1017/S0043174500040261 CASWeb of Science®Google Scholar 65 Stevenson, J.C., T.W. Jones, W.M. Kemp, W.R. Boyton and J.C. Means. 1982. An overview of atrazine dynamics in estuarine ecosystems. Proceedings, Workshop on Agrochemicals and Estuarine Productivity, Beauforth, NC, September 18-19, 1980, pp. 71–94. Google Scholar 66 Kemp, W.M., W.R. Boyton, J.J. Cunningham, J.C. Stevenson, T.W. Jones and J.C. Means. 1985. Effects of atrazine and linuron on photosynthesis and growth of the macrophytes, Potamogeton perfoliatus L. and Myriophyllum spicatum L., in an estuarine environment. Mar. Environ. Res. 16: 255–280. 10.1016/0141-1136(85)90023-6 CASWeb of Science®Google Scholar 67 Larsen, D.P., F. DeNoyelles, F. Stay and T. Shiro-yama. 1986. Comparisons of single-species, microcosm and experimental pond responses to atrazine exposure. Environ. Toxicol. Chem. 5: 179–190. 10.1002/etc.5620050209 CASWeb of Science®Google Scholar 68 Forney, D.R. 1980. Effects of atrazine on Chesapeake Bay aquatic plants. M. S. thesis. Auburn University, Auburn, AL. Google Scholar 69 Cunningham, J.J., W.M. Kemp, M.R. Lewis and J.C. Stevenson. 1984. Temporal responses of the macro-phyte Potamogeton perfoliatus L., and its associated autotrophic community to atrazine exposure in estuarine microcosms. Estuaries 7: 519–530. 10.2307/1352057 Web of Science®Google Scholar 70 Huber, W., F.-J. Zieris, D. Feind and K.E. Neugebaur. 1988. Ökotoxikologische Bewertung von Umwelt-chemikalien mit Hilfe von aquatischen Modellöko-systemen. In M. Verfondern and B. Scheele, eds., Methoden zur ökotoxikologischen Bewertung von Chemikalien. Spezielle Berichte der Kernforschungs-anlage Jülich GmbH 440. Jülich, West Germany, pp. 202–278. Google Scholar 71 Neugebaur, K.E. 1988. Beurteilung und Validierung der ökologischen Wirkung von Herbiziden durch ver-gleichende Untersuchungen in aquatischen Labor-und Freilandsystemen. Ph.D. thesis. Technische Universität München-Weihenstephan, Freising, West Germany. Google Scholar 72 Neugebaur, K.E., F.-J. Zieris and W. Huber. 1990. Ecological effects of atrazine on two outdoor artificial freshwater ecosystems. Z. Wasser-Abwasser-Forsch. 23: 11–17. CASWeb of Science®Google Scholar 73 Kemp, W.M., W.R. Boyton, J.C. Stevenson, J.C. Means, R.R. Twilley and T.W. Jones. 1983. Submerged aquatic vegetation in upper Chesapeake Bay: Studies related to possible causes of the recent decline in abundance. EPA 600/3-84-015. Final Report. U. S. Environmental Protection Agency, Annapolis, MD. Google Scholar 74 Butler, G.L., T.R. Deason and J.C. O'Kelly. 1975. The effect of atrazine, 2,4-D, methoxychlor, carba-ryl and diazinon on the growth of planktonic algae. Brit. Phycol. J. 10: 371–376. 10.1080/00071617500650391 Google Scholar 75 O'Kelly, J.D. and T.R. Deason. 1976. Degradation of pesticides by algae. EPA 600/3-76-002. Final Report. U. S. Environmental Protection Agency, Athens, GA. Google Scholar 76 Ramirez-Torres, A.M. and L.M. O'Flaherty. 1976. Influence of pesticides on Chlorella, Chlorococcum, Stigeoclonium, Tribonema, Vaucheria and Oscil-latoria. Phycologia 15: 25–36. 10.2216/i0031-8884-15-1-25.1 Google Scholar 77 Millie, D.F. and C.M. Hersh. 1987. Statistical characterizations of the atrazine-induced photosynthetic inhibition of Cyclotella meneghiniana (Bacillari-ophyta). Aquat. Toxicol. 10: 239–249. 10.1016/0166-445X(87)90015-4 CASWeb of Science®Google Scholar 78 Hollister, T.A. and G.E. Walsh. 1973. Differential responses of marine phytoplankton to herbicides: Oxygen evolution. Bull. Environ. Contam. Toxicol. 9: 291–295. 10.1007/BF01684786 CASPubMedWeb of Science®Google Scholar 79 Gonzales-Murua, C., A. Munos-Rueda, F. Hernando and M. Sanchez-Diaz. 1985. Effect of atrazine and methabenzthiazuron on oxygen evolution and cell growth of Chlorella pyrenoidosa. Weed Res. 25: 61–66. 10.1111/j.1365-3180.1985.tb00618.x Web of Science®Google Scholar 80 Veber, K., J. Zahranik, I. Breyl and F. Kredl. 1981. Toxic effect and accumulation of atrazine in algae. Bull. Environ. Contam. Toxicol. 27: 872–876. 10.1007/BF01611110 CASPubMedWeb of Science®Google Scholar 81 Turbak, S.C., S.B. Olson and G.A. McFeters. 1986. Comparison of algal assay systems for detecting waterborne herbicides and metals. Water Res. 20: 91–96. 10.1016/0043-1354(86)90219-8 CASWeb of Science®Google Scholar 82 Jones, T.W., W.M. Kemp, P.S. Estes and J.C. Stevenson. 1986. Atrazine uptake, photosynthetic inhibition, and short-term recovery for the submersed vascular plant Potamogeton perfoliatus L. Arch. Environ. Contam. Toxicol. 15: 277–283. 10.1007/BF01061104 CASWeb of Science®Google Scholar 83 Lampert, W. 1987. Subletale Wirkungen auf Bi-ozönosen. In K. Lillelund, U. de Haar, E.-J. Elster, L. Karbe, I. Schwoerbel and W. Simonis, eds., Bioak-kumulation in Nahrungsketten, Verlag Chemie, Wein-heim, West Germany, pp. 145–151. Google Scholar 84 Fleekner, W. 1988. Okotoxikologische Untersuchungen mit Herbiziden in eingeschlossenen Wasserkör-pern in situ. Ph.D. thesis. Universität Kiel, Kiel, West Germany. Google Scholar 85 Schlosser, H.J. 1988. Auswertung ökotoxikologischer Forschungen zur Belastung von Ökosystemen durch Chemikalien. Forschungsbericht (report) an das Bun-desministerium fur Forschung- und Technologie (BMFT) 03 7393 4. Biologische Bundesanstalt für Land- und Forstwirtschaft, Berlin, West Germany. Google Scholar 86 Pratt, J.R., N.J. Bowers, B.R. Niederlehner and J. Cairns, Jr. 1988. Effects of atrazine on freshwater microbial communities. Arch. Environ. Contam. Toxicol. 17: 449–457. 10.1007/BF01055510 CASPubMedWeb of Science®Google Scholar 87 DeNoyelles, F., Jr. and W.D. Kettle. 1985. Experimental ponds for evaluating bioassay predictions. In T.P. Boyle, ed., Validation and Predictability of Laboratory Methods for Assessing the Fate and Effects of Contaminants in Aquatic Ecosystems. STP 865. American Society for Testing and Materials, Philadelphia, PA, pp. 91–103. 10.1520/STP35256S Google Scholar 88 Brockway, D.L., P.D. Smith and F.E. Stancil. 1984. Fate and effects of atrazine in small aquatic microcosms. Bull. Environ. Contam. Toxicol. 32: 345–353. 10.1007/BF01607508 CASPubMedWeb of Science®Google Scholar 89 Hamala, J.A. and H.P. Kollig. 1985. The effects of atrazine on periphyton communities in controlled laboratory ecosystems. Chemosphere 14: 1391–1408. 10.1016/0045-6535(85)90159-6 CASWeb of Science®Google Scholar 90 Kosinski, R.J. 1984. The effect of terrestrial herbicides on the community structure of stream periphyton. Environ. Pollut. Ser. A 36: 165–189. 10.1016/0143-1471(84)90097-7 CASWeb of Science®Google Scholar 91 Krieger, K.A., D.B. Baker and J.W. Kramer. 1988. Effects of herbizides on stream aufwuchs, productivity and nutrient uptake. Arch. Environ. Contam. Toxicol. 17: 299–306. 10.1007/BF01055166 CASPubMedWeb of Science®Google Scholar 92 Leonard, R.A. 1988. Herbicides in surface waters. In R. Grover, ed., Environmental Chemistry of Herbicides. Vol. 1. CRC, Boca Raton, FL, pp. 45–87. Google Scholar 93 Richard, J.J., G.A. Junk, M.J. Avery, N.X. Nehr-ing, J.S. Fritz and H.J. Svec. 1975. Residues in water. Pestic. Monit. J. 9: 117–123. CASPubMedWeb of Science®Google Scholar 94 Besch, W.K., A. Hamm, B. Lenhart, A. Melzer, B. Scharf and C. Steinberg. 1984. Limnologie für die Praxis, Grundlagen des Gewässerschutzes. Ecomed Verlagsgesellschaft, München, West Germany. Google Scholar 95 Rudolph, P. and R. Boje. 1986. Ökotoxikologie: Grundlagen für die ökotoxikologische Bewertung von Umweltchemikalien nach dem Chemikalien-gesetz. Ecomed Verlagsgesellschaft, München, West Germany. Google Scholar 96 Ward, G.S. and L. Ballantine. 1985. Acute and chronic toxicity of atrazine to estuarine fauna. Estuaries 8: 22–27. 10.2307/1352118 CASWeb of Science®Google Scholar 97 Huckins, J.N., J.D. Petty and D.C. England. 1986. Distribution and impact of trifluralin, atrazine, and fonofos residues in microcosms simulating a northern prairie wetland. Chemosphere 15: 563–588. 10.1016/0045-6535(86)90005-6 CASWeb of Science®Google Scholar 98 Pott, E. 1982. Experimental investigations of the effect of herbicides on the food uptake of Daphnia pulicaria. Arch. Hydrobiol. 59: 330–358. CASGoogle Scholar 99 Macek, K.J., K.S. Buxton, S. Sauter, S. Gnilka and J.W. Dean. 1976. Chronic toxicity of atrazine to selected aquatic invertebrates and fishes. EPA 600/-76-047. Final Report. U. S. Environmental Protection Agency, Duluth, MN. Google Scholar 100 Streit, B. and H.M. Peter. 1978. Long-term effects of atrazine to selected freshwater invertebrates. Arch. Hydrobiol. Suppl. 55: 62–77. CASGoogle Scholar 101 Kaushik, N.K., K.R. Solomon, G. Stephenson and K. Day. 1985. Assessment of sublethal effects of atrazine on zooplankton. Can. Tech. Rep. Fish. Aquat. Sci. 1368: 377–379. Google Scholar 102 Peichl, L., J.P. Lay and F. Korte. 1984. Wirkung von Dichlobenil und Atrazin auf die Populationsdichte von Zooplanktern in einem aquatischen Freiland-system. Z. Wasser-Abwasser Forsch. 17: 134–145. CASWeb of Science®Google Scholar 103 Dewey, S.L. 1986. Effects of the herbicide atrazine on aquatic insect community structure and emergence. Ecology 67: 1285–1293. 10.2307/1938513 Web of Science®Google Scholar 104 Hamilton, P.B., G.S. Jackson, N.K. Kaushik, R.K. Solomon and G.L. Stephenson. 1988. The impact of two applications of atrazine on the plankton communities in in situ enclosures. Aquat. Toxicol. 13: 123–140. 10.1016/0166-445X(88)90038-0 CASWeb of Science®Google Scholar 105 Gunkel, G. 1983. Untersuchungen zur ökotox-ikologischen Wirkung eines Herbizids in einem aquatischen Modellökosystem. 1. Subletale und le-tale Effekte. Arch. Hydrobiol. Suppl. 65: 235–267. CASGoogle Scholar 106 Hanke, W., G. Gluth, E. Schwarz, A. Zachmann and R. Müller. 1988. Okotoxikologische Untersuchungen an Karpfen. In M. Verfondern and B. Scheele, eds., Methoden zur ökotoxikologischen Bewertung von Chemikalien. 3. Aquatische Systeme. Spezielle Berichte der Kernforschungsanlage Jülich 440. Jülich, Germany, pp. 9–42. Google Scholar 107 Alabaster, J.S. 1969. Survival of fish in 164 herbicides, insecticides, fungicides, wetting agents and miscellaneous substances. Int. Pestic. Control 11: 29–35. CASGoogle Scholar 108 Bridge, W.J., J.A. Black and D.M. Bruser. 1979. Toxicity of organic chemicals to embryo-larval stages of fish. EPA 560-1179-007. Final Report. U. S. Environmental Protection Agency, Washington, DC. Google Scholar 109 Bridge, W.J., J.A. Black, A.G. Westerman and B.A. Ramey. 1983. Fish and amphibian embryos—a model system for evaluating teratogenicity. Fundam. Appl. Toxicol. 3: 237–242. 10.1016/S0272-0590(83)80134-1 PubMedWeb of Science®Google Scholar 110 Heidler, G. 1987. Wirkung von Pflanzenschutzmit-teln auf aquatische Ökosysteme—Prüfung und Bewertung im Zulassungsverfahren. Nachrichtenblatt Deut. Pflanzenschutzd. 39: 161–165. Google Scholar 111 Kettle, W.D., F. DeNoyelles, Jr., B.D. Heacock and A.D. Kadoum. 1987. Diet and reproductive success of bluegill recovered from experimental ponds treated with atrazine. Bull. Environ. Contam. Toxicol. 38: 47–52. 10.1007/BF01606556 CASPubMedWeb of Science®Google Scholar 112 Negele, R.D. 1989. Studie über die Kurz- und Lang-zeitwirkung von Atrazin auf Regenbogenforellen. Forschungsbericht an das Umweltbundesamt 116-08-07/02. Bayerische Landesanstalt für Wasserfor-schung, München, West Germany. Google Scholar 113 Veeser, A. 1990. Licht- und elektronenmikrosko-pische Untersuchungen zur Toxizität von Atrazin bei Regenbogenforellen (Oncorhynchus mykiss) Ph.D. thesis. Universität München, München, Germany. Google Scholar 114 Gadkari, D. 1988. Effects of atrazine and paraquat on nitrifying bacteria. Arch. Environ. Contam. Toxicol. 17: 443–447. 10.1007/BF01055509 CASWeb of Science®Google Scholar 115 Bretthauer, R. 1987. Wirkung, Aufnahme und An-reicherung von Atrazin auf bzw. in Paramecium caudatum als Glied einer Nahrungskette. In K. Lillelund, U. de Haar, H.-J. Elster, L. Karbe, I. Schwoerbel and W. Simonis, eds., Bioakkumulation in Nahrungsketten. Verlag Chemie, Weinheim, pp. 169–170. Google Scholar 116 Crow, M.E. and F.B. Taub. 1979. Designing a microcosm bioassay to detect ecosystem level effects. Int. J. Environ. Stud. 13: 141–147. 10.1080/00207237908709815 Web of Science®Google Scholar 117 Giddings, J.M., P.J. Franco, R.M. Cushman, L.A. Hook, G.R. Southworth and A.J. Stuart. 1984. Effect of chronic exposure to coal-derived oil on freshwater ecosystems. 2. Experimental ponds. Environ. Toxicol. Chem. 3: 465–488. 10.1002/etc.5620030310 CASWeb of Science®Google Scholar 118 Stay, F.S., D.P. Larsen, A. Katko and C.M. Rohm. 1985. Effects of atrazine on community level responses in Taub microcosms. In T.P. Boyle, ed., Validation and Predictability of Laboratory Methods for Assessing the Fate and the Effects of Contaminants in Aquatic Ecosystems. STP 865. American Society for Testing and Materials, Philadelphia, PA, pp. 75–90. 10.1520/STP35255S Google Scholar 119 Stay, F.S., A. Katko, C.M. Rohm, M.A. Fix and D.P. Larsen. 1989. The effects of atrazine on microcosm development from four natural plankton communities. Arch. Environ. Contam. Toxicol. 18: 866–875. 10.1007/BF01160302 CASPubMedWeb of Science®Google Scholar Citing Literature Volume12, Issue10October 1993Pages 1865-1881 ReferencesRelatedInformation
Referência(s)