Modulation of cholinergic marker expression by nerve growth factor in dorsal root ganglia
2000; Wiley; Volume: 62; Issue: 4 Linguagem: Inglês
10.1002/1097-4547(20001115)62
ISSN1097-4547
AutoresStefano Biagioni, Ada Maria Tata, Chiara Agrati, Francesca Cianfarani, Gabriella Augusti‐Tocco,
Tópico(s)Nerve injury and regeneration
ResumoJournal of Neuroscience ResearchVolume 62, Issue 4 p. 591-599 Research Article Modulation of cholinergic marker expression by nerve growth factor in dorsal root ganglia Stefano Biagioni, Corresponding Author Stefano Biagioni [email protected] Dipartimento di Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Rome, ItalyDipartimento di Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Piazzale A. Moro 5, 00185 Roma, ItalySearch for more papers by this authorAda Maria Tata, Ada Maria Tata Dipartimento di Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Rome, ItalySearch for more papers by this authorChiara Agrati, Chiara Agrati Dipartimento di Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Rome, ItalySearch for more papers by this authorFrancesca Cianfarani, Francesca Cianfarani Dipartimento di Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Rome, ItalySearch for more papers by this authorGabriella Augusti-Tocco, Gabriella Augusti-Tocco Dipartimento di Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Rome, ItalySearch for more papers by this author Stefano Biagioni, Corresponding Author Stefano Biagioni [email protected] Dipartimento di Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Rome, ItalyDipartimento di Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Piazzale A. Moro 5, 00185 Roma, ItalySearch for more papers by this authorAda Maria Tata, Ada Maria Tata Dipartimento di Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Rome, ItalySearch for more papers by this authorChiara Agrati, Chiara Agrati Dipartimento di Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Rome, ItalySearch for more papers by this authorFrancesca Cianfarani, Francesca Cianfarani Dipartimento di Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Rome, ItalySearch for more papers by this authorGabriella Augusti-Tocco, Gabriella Augusti-Tocco Dipartimento di Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Rome, ItalySearch for more papers by this author First published: 03 November 2000 https://doi.org/10.1002/1097-4547(20001115)62:4 3.0.CO;2-SCitations: 8AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The presence of cholinergic markers in sensory ganglia has suggested a possible functional role of acetylcholine both as a cofactor of morphogenesis in embryonic life and in sensory transduction during adult life. Acetylcholine, in fact, is able to excite cutaneous nociceptors and to modulate noxious stimuli. Nerve growth factor (NGF) overexpression induces the survival of nociceptive neurons, the expression of their specific markers, and hyperalgesia. On the other hand, NGF modulate the levels of cholinergic markers in several area of nervous system. Considering these observations, the present work aims to investigate whether NGF is able also to control the expression of cholinergic markers in chick sensory neurons in culture. We selected three developmental stages (E8, E12, and E18) representative of different phases of chick embryo development and performed observations on culture in which NGF was omitted at the plating time, withdrawn after the initial 24 hr of culture or maintained for 48 hr. In the experimental protocol devised, NGF did not significantly affect cell survival. At E12 a 48 hr treatment with NGF causes a significant but limited increase in acetylcholinesterase activity; activity increase was not observed when NGF was removed after 24 hr. No changes in acetylcholinesterase activity were observed at E8 and E18 stages. NGF appears to be more effective in the modulation of choline acetyltransferase activity. At E12, in fact, about a doubling of enzyme activity was measured after 24 or 48 hr of treatment with NGF. A response was also found at E18, when a 50% increase in choline acetyltransferase activity was observed just after 24 hr treatment. The behavior of muscarinic receptors in response to NGF differs compared to the two cholinergic enzymes. At E8 and E12 a profound increase in muscarinic receptor expression was observed. Conversely, at E18 NGF produces a 50% reduction of receptors. Considering these observations and the demonstrated role of muscarinic receptors in the desensitization of nociceptors, the reduction of muscarinic receptors in DRG after NGF treatment is in agreement with the proposed algogenic action of NGF in the skin. J. Neurosci. Res. 62:591–599, 2000. © 2000 Wiley-Liss, Inc. REFERENCES Albers KM, Wright DE, Davis BM. 1994. Overexpression of nerve growth factor in epidermis of transgenic mice causes hypertrophy of the peripheral nervous system. J Neurosci 14: 1422–1432. 10.1523/JNEUROSCI.14-03-01422.1994 CASPubMedWeb of Science®Google Scholar Augusti-Tocco G, Biagioni S, Plateroti M, Scarsella G, Vignoli AL. 1991. Cellular and molecular aspects of neuronal differentiation. In: P Bagnoli, W Hodos, editors. The changing visual system: maturation and aging in the central nervous system. New York: Plenum Press. p 311–318. 10.1007/978-1-4615-3390-0_23 Google Scholar Barde YA, Edgar D, Thoenen H. 1980. Sensory neurons in culture: changing requirements for survival factors during embryonic development. Proc Natl Acad Sci USA 77: 1199–1203. 10.1073/pnas.77.2.1199 CASPubMedWeb of Science®Google Scholar Battaglia G, Rustioni A. 1988. Coexistence of glutamate and substance P in dorsal root ganglion neurons of the rat and monkey. J Comp Neurol 277: 302–312. 10.1002/cne.902770210 CASPubMedWeb of Science®Google Scholar Bernardini N, De Stefano ME, Tata AM, Biagioni S, Augusti-Tocco G. 1998. Neuronal and non-neuronal cell population of the avian dorsal root ganglia express muscarinic acetylcholine receptors. Int J Dev Neurosci 16: 365–377. 10.1016/S0736-5748(98)00038-0 CASPubMedWeb of Science®Google Scholar Bernardini N, Levey AI, Augusti-Tocco G. 1999a. Rat dorsal root ganglia express m1–m4 muscarinic receptor proteins. J Periph Nerv Syst 4: 222–232. CASPubMedWeb of Science®Google Scholar Bernardini N, Sauer SK, Fischer MJN, Reeh PW. 1999b. Differential effects of nicotine and muscarine on C-nociceptor endings in rat skin, in vitro. Satellite Meeting of the 9th World Congress on Pain: "The Primary Nociceptive Neuron," Praga. Google Scholar Biagioni S, Odorisio T, Poiana G, Scarsella G, Augusti-Tocco G. 1989. Acetylcholinesterase in the development of chick dorsal root ganglia. Int J Dev Neurosci 7: 267–273. 10.1016/0736-5748(89)90031-2 CASPubMedWeb of Science®Google Scholar Biagioni S, Tata AM, Augusti-Tocco G. 1999. Expression of cholinergic system components in dorsal root ganglion (DRG) neurons: its possible dual role in development and nociception. Rec Res Dev Neurochem 2: 443–461. CASGoogle Scholar Biagioni S, Tata AM, De Jaco A, Augusti-Tocco G. 2000. Acetylcholine synthesis and neuron differentiation. Int J Dev Biol (in press). PubMedWeb of Science®Google Scholar Bottenstein JE, Sato GH. 1979. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci USA 76: 514–517. 10.1073/pnas.76.1.514 CASPubMedWeb of Science®Google Scholar Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254. 10.1016/0003-2697(76)90527-3 CASPubMedWeb of Science®Google Scholar Casaccia-Bonnefil P, Gu C, Chao MV. 1999. Neurotrophins in cell survival/death decision. Adv Exp Med Biol 468: 275–282. 10.1007/978-1-4615-4685-6_22 CASPubMedWeb of Science®Google Scholar Castrignanò F, De Stefano ME, Leone F, Mulatero B, Tata AM, Fasolo A, Augusti-Tocco G. 1990. Ontogeny of acetylcholinesterase, substance P and calcitonin gene-related peptide-like immunoreactivity in chick dorsal root ganglia. Neuroscience 34: 499–510. 10.1016/0306-4522(90)90158-Z CASPubMedWeb of Science®Google Scholar Cavicchioli L, Flanigan TP, Dickson JG, Vantini G, Toso RD, Fusco M, Walsh FS, Leon A. 1991. Choline acetyl transferase messenger RNA expression in developing and adult rat brain: regulation by nerve growth factor. Brain Res Mol Brain Res 9: 319–325. 10.1016/0169-328X(91)90079-D CASPubMedWeb of Science®Google Scholar Crowley C., Spencer SD, Nishimura MC, Chen KS, Pitts-Meck S, Armanini MP, Ling LH, Mc Mahon SB, Shelton DL, Lewinson AD, Phillips HS., 1994. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76: 1001–1011. 10.1016/0092-8674(94)90378-6 CASPubMedWeb of Science®Google Scholar Davies AM. 1987. Molecular and cellular aspect of patterning sensory neurone connection in the vertebrate nervous system. Development 100: 185–208. PubMedWeb of Science®Google Scholar Davis BM, Fundin BT, Albers KM, Goodness TP, Cronk KM, Rice FL. 1997. Overexpression of nerve growth factor in skin causes preferential increase among innervation to specific sensory targets. J Comp Neurol 387: 489–506. 10.1002/(SICI)1096-9861(19971103)387:4 3.0.CO;2-Z CASPubMedWeb of Science®Google Scholar Dupree JL, Bigbee JW. 1994. Retardation of neuritic outgrowth and cytoskeletal changes accompany acetylcholinestarase inibitor treatment in cultured rat dorsal root ganglion neurons. J Neurosci Res 39: 557–575. 10.1002/jnr.490390508 Web of Science®Google Scholar Ebstein RP, Bennet ER, Sokoloff M, Shonam S. 1993. The effect of nerve growth factor on cholinergic cells in primary fetal striatal cultures, characterization by in situ hybridation. Brain Res Dev Brain Res 73: 165–172. 10.1016/0165-3806(93)90134-V CASPubMedWeb of Science®Google Scholar Eva C, Fusco M, Bono C, Tria MA, Ricci Gasmalero S, Leon, Genazzani E. 1992. Nerve growth factor modulates the expression of muscarinic cholinergic receptor messenger RNA in thelencephalic neuronal cultures from newborn rat brain. Brain Res Mol Brain Res 14: 344–351. 10.1016/0169-328X(92)90102-H CASPubMedWeb of Science®Google Scholar Ellman GL, Courtney KD, Andres V, Featherstone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88–95. 10.1016/0006-2952(61)90145-9 CASPubMedWeb of Science®Google Scholar Fonnum F. 1975. A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem 24: 407–409. 10.1111/j.1471-4159.1975.tb11895.x CASPubMedWeb of Science®Google Scholar Forander P, Soderstrom S, Humpel C, Stromberg I. 1996. Chronic infusions of nerve growth factor into rat striatum increases cholinergic markers and inhibits striatal neuronal discharge rate. Eur J Neurosci 8: 1822–1832. 10.1111/j.1460-9568.1996.tb01326.x CASPubMedWeb of Science®Google Scholar Frade JM, Barde YA. 1998. Nerve growth factor: two receptors, multiple functions. Bioessays 20: 137–145. 10.1002/(SICI)1521-1878(199802)20:2 3.0.CO;2-Q CASPubMedWeb of Science®Google Scholar Gnahn H, Hefti F, Heumann R, Schwab RE, Thonen H. 1983. NGF- mediated increase of choline acetyltransferase ChAT in the neonatal rat forebrain: evidence for a physiological role of NGF in the brain? Brain Res Dev Brain Res 9: 45–52. 10.1016/0165-3806(83)90107-4 CASWeb of Science®Google Scholar Goedert M, Otten U, Hunt SP, Bond A, Chapman D, Schlumpf M, Lichtensteiger W. 1984. Biochemical and anatomical effects of antibodies against nerve growth factor on developing rat sensory ganglia. Proc Natl Acad Sci USA 81: 1580–1584. 10.1073/pnas.81.5.1580 CASPubMedWeb of Science®Google Scholar Gogstad GO, Krutnes MB 1982. Measurement of protein in cell suspensions using the Coomassie brilliant blue dye-binding assay. Anal Biochem 126: 355–359. 10.1016/0003-2697(82)90527-9 CASPubMedWeb of Science®Google Scholar Gomeza J, Shannon H, Kostenis E, Felder C, Zhang L, Brodkin J, Grinberg A, Sheng H, Wess J. 1999. Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96: 1692–1697. 10.1073/pnas.96.4.1692 CASPubMedWeb of Science®Google Scholar Goodness TP, Albers KM, Davis KE, Davis BM. 1997. Overexpression of nerve growth factor in skin increases sensory neurons size and modulates trk receptor expression. Eur J Neurosci 9: 1574–1585. 10.1111/j.1460-9568.1997.tb01515.x CASPubMedWeb of Science®Google Scholar Grando SA, Kist DA, Qi M, Dahl MV. 1993. Human keratinocytes synthesize, store, secrete and degrade acetylcholine. Invest Dermatol 101: 32–36. 10.1111/1523-1747.ep12358588 CASPubMedWeb of Science®Google Scholar Hayashi H, Edgar D, Thoenen H. 1983. The development of sustance P, somatostatin and vasoactive intestinal polypeptide in symphathetic and spinal sensory ganglia of the chick embryo. Neuroscience 10: 31–39. 10.1016/0306-4522(83)90078-7 CASPubMedWeb of Science®Google Scholar Herdegen T, Leah JD. 1998. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Brain Res Rev 28: 370–490. 10.1016/S0165-0173(98)00018-6 CASPubMedWeb of Science®Google Scholar Kaplan DR. 1998. Studying signal transduction in neuronal cells: the Trk/NGF system. Progr Brain Res 117: 35–46. Web of Science®Google Scholar Kasai K, Mizumura K. 1999. Endogenous nerve growth factor increases the sensitivity to bradykinin in small dorsal root ganglion neurons of adjuvant inflamed rats. Neurosci Lett 272: 41–44. 10.1016/S0304-3940(99)00568-6 CASPubMedWeb of Science®Google Scholar Kress M, Reeh PW. 1996. Chemical excitation and sensitization in nociceptors. In: C Belmonte, F Cervero, editors. Neurobiology of nociceptors. Oxford: Oxford University Press. p 258–297. Web of Science®Google Scholar Lawson SN. 1992. Morphological and biochemical cell types of sensory neurons. In: SA Scott, editor. Sensory neurons. Diversity, development, and plasticity. Oxford: Oxford University Press. p 27–59. Web of Science®Google Scholar Levi-Montalcini R, Levi G. 1943. Recherches quantitatives sur la marche du processus de differenciacion des neurones dans les ganglions spinaux de l'embryon de poulet. Arch Biol 54: 199–206. Google Scholar Levi-Montalcini R, Skaper SD, Dal Toso R, Petrelli L, Leon A. 1996. Nerve growth factor: from neurotrophin to neurochine. Trends Neurosci 19: 514–520. 10.1016/S0166-2236(96)10058-8 CASPubMedWeb of Science®Google Scholar Lewin GR, Mendell LM. 1993. Nerve growth factor and nociception. Trends Neurosci 16: 353–359 10.1016/0166-2236(93)90092-Z CASPubMedWeb of Science®Google Scholar Lindsay RM, Harmar A. 1989. Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature 337: 362–364. 10.1038/337362a0 CASPubMedWeb of Science®Google Scholar Magerl W, Gräneer G, Handwerker HO. 1990. Sensations and local inflammatory responses induced by application of carbacol, dopamine, 5-HT, histamine and mustard oil to the skin in humans. Pflügers Arch 415: R107. Google Scholar Malcangio M, Garrett NE, Cruwys S, Tomlinson DR. 1997. Nerve growth factor- and neurotrophin-3-induced changes in nociceptive threshold and the release of substance P from the rat isolated spinal cord. J Neurosci 17: 8459–8467. CASPubMedWeb of Science®Google Scholar Massouliè J, Pezzementi L, Bon S, Krejci E, Vallette FM. 1993. Molecular and cellular biology of cholinesterases. Progr Neurobiol 41: 31–91. 10.1016/0301-0082(93)90040-Y CASPubMedWeb of Science®Google Scholar Misawa H, Matsuura J, Oda Y, Takahashi R, Deguchi T. 1997. Human choline acetyltransferase mRNAs with different 5′-region produce a 69-kDa major translation product. Brain Res Mol Brain Res 44: 323–333. 10.1016/S0169-328X(96)00231-8 CASPubMedWeb of Science®Google Scholar Pongrac JL, Rylett RJ. 1998. Molecular mechanisms regulating NGF-mediated enhancement of cholinergic neuronal phenotype: c-fos trans-activation of the choline acetyltransferase gene. J Mol Neurosci 11: 79–93. 10.1385/JMN:11:1:79 CASPubMedWeb of Science®Google Scholar Puttfarken PS, Manelli MA, Arneric SP, Donnelly-Roberts DL. 1997. Evidence for nicotinic receptors potentially modulating nociceptive transmission at the level of the primary sensory neuron: studies with F11 cells. J Neurochem 69: 930–938. 10.1046/j.1471-4159.1997.69030930.x PubMedWeb of Science®Google Scholar Rosati AM, Guarnieri E, Avignone E, Cherubini E, Cattaneo A, Traversa U. 1999. Increased density of M1 receptors in the hippocampus of juvenile rats chronically deprived of NGF. Brain Res 915: 185–191. 10.1016/S0006-8993(98)01167-6 PubMedWeb of Science®Google Scholar Salt TE, Hill RG. 1983. Neurotransmitter candidates of somatosensory primary afferent fibers. Neuroscience 4: 1083–1103. 10.1016/0306-4522(83)90101-X Web of Science®Google Scholar Schuman EM. 1999. Neurotrophic regulation of synaptic transmission. Curr Opin Neurobiol 9: 105–109. 10.1016/S0959-4388(99)80013-0 CASPubMedWeb of Science®Google Scholar Shu XQ, Mendell LM., 1999a. Neurotrophins and hyperalgesia. Proc Natl Acad Sci USA 96: 7693–7696. 10.1073/pnas.96.14.7693 CASPubMedWeb of Science®Google Scholar Shu XQ, Mendell LM., 1999b. Nerve growth factor acutely sensitizes the response of adult rat sensory neurons to capsaicin. Neurosci Lett 274: 159–162. 10.1016/S0304-3940(99)00701-6 CASPubMedWeb of Science®Google Scholar Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S, Lewin A, Lisa SA, Barbacid M. 1994. Severe sensory deficits and sympathetic neuropathies in mice carryng a disrupted Trk/NGF receptor gene. Nature 368: 246–249. 10.1038/368246a0 CASPubMedWeb of Science®Google Scholar Steen KH, Reeh PW. 1993. Actions of cholinergic agonists and antagonists on sensory nerve endings in rat skin, in vitro. J Neurophysiol 70: 397–405. 10.1152/jn.1993.70.1.397 CASPubMedWeb of Science®Google Scholar Stricker CQ, Mauvais C, Schmitt M. 1997. Transcriptional activation of human choline acetyltransferase by AP2- and NGF-induced factors. Brain Res Mol Brain Res 49: 165–174. 10.1016/S0169-328X(97)00141-1 PubMedWeb of Science®Google Scholar Stucky CL, Koltzenburg M, Schneider M, Engle MG, Albers KM, Davis BM. 1999. Overexpression of nerve growth factor in skin selectively affects the survival and functional properties of nociceptors. J Neurosci 19: 8509–8516. 10.1523/JNEUROSCI.19-19-08509.1999 CASPubMedWeb of Science®Google Scholar Tanellian DL. 1991. Cholinergic activation of a population of corneal afferent nerves. Exp Brain Res 86: 414–420. 10.1007/BF00228966 PubMedWeb of Science®Google Scholar Tata AM, Plateroti M, Cibati M, Biagioni S, Augusti-Tocco G. 1994. Cholinergic markers are expressed in developing and mature neurons of chick dorsal root ganglia. J Neurosci Res 37: 247–255. 10.1002/jnr.490370210 CASPubMedWeb of Science®Google Scholar Tata AM, Biagioni S, Ricci A, Amenta F, Augusti-Tocco G. 1995. Muscarinic cholinergic receptors in dorsal root ganglia of chick embryo: a radioligand binding and immunocytochemical study. Neurosci Lett 189: 139–142. 10.1016/0304-3940(95)11474-B CASPubMedWeb of Science®Google Scholar Tata AM, Vilaró MT, Agrati C, Biagioni S, Mengod G, Augusti-Tocco G. 1999. Expression of muscarinic m2 receptor mRNA in dorsal root ganglia of neonatal rat. Brain Res 824: 63–70. 10.1016/S0006-8993(99)01109-9 CASPubMedWeb of Science®Google Scholar Tata AM, Vilaró MT, Mengod G. 2000. Muscarinic receptor subtype expression in rat and chick dorsal root ganglia. Brain Res Mol Brain Res (in press). 10.1016/S0169-328X(00)00165-0 PubMedWeb of Science®Google Scholar Taylor P, Luo ZD, Camp S. 2000. The genes encoding the cholinesterases: structure, evolutionary relationship and regulation of their expression. In: E Giacobini, editor. Cholinesterases and cholinesterases inhibitors. London: Martin Dunitz Ltd. p 63–79. Google Scholar Tian X, Sun X, Suszkiw JB. 1996. Developmental age dependent upregulation of choline acetyltransferase and vesicular acetylcholine transporter mRNA expression in neonatal rat septum by nerve growth factor. Neurosci Lett 209: 134–136. 10.1016/0304-3940(96)12629-X CASPubMedWeb of Science®Google Scholar Wamsley JK, Palacios JM. 1983. Receptor autoradiography. In: JL Barker, JF McKelvy, editors. Current methods in cellular neurobiology. New York: John Wiley & Sons. p 40–52. Google Scholar Citing Literature Volume62, Issue415 November 2000Pages 591-599 ReferencesRelatedInformation
Referência(s)