Higher Order Multivariate Fuzzy Approximation by basic Neural Network Operators
2014; University of La Frontera; Volume: 16; Issue: 3 Linguagem: Espanhol
10.4067/s0719-06462014000300003
ISSN0719-0646
Autores Tópico(s)Fuzzy Systems and Optimization
ResumoHere are studied in terms of multivariate fuzzy high approximation to the multivariate unit basic sequences of multivariate fuzzy neural network operators.These operators are multivariate fuzzy analogs of earlier studied multivariate real ones.The produced results generalize earlier real ones into the fuzzy setting.Here the high order multivariate fuzzy pointwise convergence with rates to the multivariate fuzzy unit operator is established through multivariate fuzzy inequalities involving the multivariate fuzzy moduli of continuity of the Nth order (N ≥ 1) H-fuzzy partial derivatives, of the engaged multivariate fuzzy number valued function. RESUMENUtilizando aproximaciones multivariadas difusas superiores, estudiamos la aplicación a secuencias básicas unitarias multivariadas de operadores de redes neuronales disfusas multivariadas.Estos operadores son análogos difusos multivariados de los reales multivariados estudiados anteriormente.Los resultados obtenidos generalizan los resultados reales anteriores en el marco difuso.La convergencia puntual difusa multivariada de orden superior con velocidades para los operadores unitarios difusos multivariados se establece a través de desigualdades difusas multivariadas que involucran los módulos de continuidad difusos multivariados de las derivadas parciales H-difusas de N-ésimo orden (N ≥ 1) de las funciones con valores numéricos difusos multivariados.
Referência(s)