Substrate–cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance
2000; Wiley; Volume: 44; Issue: 2 Linguagem: Inglês
10.1002/1097-4695(200008)44
ISSN1097-4695
AutoresDaniel M. Suter, Paul Forscher,
Tópico(s)Developmental Biology and Gene Regulation
ResumoJournal of NeurobiologyVolume 44, Issue 2 p. 97-113 Substrate–cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance Daniel M. Suter, Daniel M. Suter Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520Search for more papers by this authorPaul Forscher, Corresponding Author Paul Forscher [email protected] Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520Search for more papers by this author Daniel M. Suter, Daniel M. Suter Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520Search for more papers by this authorPaul Forscher, Corresponding Author Paul Forscher [email protected] Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520Search for more papers by this author First published: 03 August 2000 https://doi.org/10.1002/1097-4695(200008)44:2 3.0.CO;2-UCitations: 253AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Growth cones are highly motile structures at the end of neuronal processes, capable of receiving multiple types of guidance cues and transducing them into directed axonal growth. Thus, to guide the axon toward the appropriate target cell, the growth cone carries out different functions: it acts as a sensor, signal transducer, and motility device. An increasing number of molecular components that mediate axon guidance have been characterized over the past years. The vast majority of these molecules include proteins that act as guidance cues and their respective receptors. In addition, more and more signaling and cytoskeleton-associated proteins have been localized to the growth cone. Furthermore, it has become evident that growth cone motility and guidance depends on a dynamic cytoskeleton that is regulated by incoming guidance information. Current and future research in the growth cone field will be focussed on how different guidance cues transmit their signals to the cytoskeleton and change its dynamic properties to affect the rate and direction of growth cone movement. In this review, we discuss recent evidence that cell adhesion molecules can regulate growth cone motility and guidance by a mechanism of substrate–cytoskeletal coupling. © 2000 John Wiley & Sons, Inc. J Neurobiol 44: 97–113, 2000 REFERENCES Aberle H, Schwartz H, Kemler R. 1996. Cadherin-catenin complex: protein interactions and their implications for cadherin function. J Cell Biochem 61: 514–523. 10.1002/(SICI)1097-4644(19960616)61:4 3.0.CO;2-R CASPubMedWeb of Science®Google Scholar Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P. 1998. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393: 805–809. 10.1038/31729 CASPubMedWeb of Science®Google Scholar Beckerle MC. 1998. Spatial control of actin filament assembly: lessons from Listeria. Cell 95: 741–748. 10.1016/S0092-8674(00)81697-9 CASPubMedWeb of Science®Google Scholar Bentley D, O'Connor TP. 1994. Cytoskeletal events in growth cone steering. Curr Opin Neurobiol 4: 43–48. 10.1016/0959-4388(94)90030-2 CASPubMedWeb of Science®Google Scholar Bentley D, Toroian-Raymond A. 1986. Disoriented pathfinding by pioneer neuron growth cones deprived of filopodia by cytochalasin treatment. Nature 323: 712–715. 10.1038/323712a0 CASPubMedWeb of Science®Google Scholar Bixby JL, Zhang R. 1990. Purified N-cadherin is a potent substrate for the rapid induction of neurite outgrowth. J Cell Biol 110: 1253–1260. 10.1083/jcb.110.4.1253 CASPubMedWeb of Science®Google Scholar Bovolenta P, Mason C. 1987. Growth cone morphology varies with position in the developing mouse visual pathway from retina to first targets. J Neurosci 7: 1447–1460. 10.1523/JNEUROSCI.07-05-01447.1987 CASPubMedWeb of Science®Google Scholar Bozyczko D, Horwitz AF. 1986. The participation of a putative cell surface receptor for laminin and fibronectin in peripheral neurite extension. J Neurosci 6: 1241–1251. 10.1523/JNEUROSCI.06-05-01241.1986 PubMedWeb of Science®Google Scholar Bray D. 1979. Mechanical tension produced by nerve cells in tissue culture. J Cell Sci 37: 391–410. CASPubMedWeb of Science®Google Scholar Bray D. 1984. Axonal growth in response to experimentally applied mechanical tension. Dev Biol 102: 379–389. 10.1016/0012-1606(84)90202-1 CASPubMedWeb of Science®Google Scholar Bray D, Chapman K. 1985. Analysis of microspike movements on the neuronal growth cone. J Neurosci 5: 3204–3213. CASPubMedWeb of Science®Google Scholar Bray D, Hollenbeck PJ. 1988. Growth cone motility and guidance. Annu Rev Cell Biol 4: 43–61. 10.1146/annurev.cb.04.110188.000355 CASPubMedWeb of Science®Google Scholar Bridgman PC, Dailey ME. 1989. The organization of myosin and actin in rapid frozen nerve growth cones. J Cell Biol 108: 95–109. 10.1083/jcb.108.1.95 CASPubMedWeb of Science®Google Scholar Brummendorf T, Rathjen FG. 1995. Cell adhesion molecules 1: immunoglobulin superfamily. Protein Profile 2: 963–108. CASPubMedWeb of Science®Google Scholar Brummendorf T, Rathjen FG. 1996. Structure/function relationships of axon-associated adhesion receptors of the immunoglobulin superfamily. Curr Opin Neurobiol 6: 584–593. 10.1016/S0959-4388(96)80089-4 CASPubMedWeb of Science®Google Scholar Buchstaller A, Kunz S, Berger P, Kunz B, Ziegler U, Rader C, Sonderegger P. 1996. Cell adhesion molecules NgCAM and axonin-1 form heterodimers in the neuronal membrane and cooperate in neurite outgrowth promotion. J Cell Biol 135: 1593–1607. 10.1083/jcb.135.6.1593 CASPubMedWeb of Science®Google Scholar Burden-Gulley SM, Lemmon V. 1996. L1, N-cadherin, and laminin induce distinct distribution patterns of cytoskeletal elements in growth cones. Cell Motil Cytoskeleton 35: 1–23. 10.1002/(SICI)1097-0169(1996)35:1 3.0.CO;2-F CASPubMedWeb of Science®Google Scholar Burridge K, Chrzanowska-Wodnicka M. 1996. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 12: 463–518. 10.1146/annurev.cellbio.12.1.463 CASPubMedWeb of Science®Google Scholar Caldwell JE, Heiss SG, Mermall V, Cooper JA. 1989. Effects of CapZ, an actin capping protein of muscle, on the polymerization of actin. Biochemistry 28: 8506– 8514. 10.1021/bi00447a036 CASPubMedWeb of Science®Google Scholar Carlier MF. 1998. Control of actin dynamics. Curr Opin Cell Biol 10: 45–51. 10.1016/S0955-0674(98)80085-9 CASPubMedWeb of Science®Google Scholar Carlier MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D. 1997. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136: 1307–1322. 10.1083/jcb.136.6.1307 CASPubMedWeb of Science®Google Scholar Caudy M, Bentley D. 1986a. Pioneer growth cone morphologies reveal proximal increases in substrate affinity within leg segments of grasshopper embryos. J Neurosci 6: 364–379. CASPubMedWeb of Science®Google Scholar Caudy M, Bentley D. 1986b. Pioneer growth cone steering along a series of neuronal and non-neuronal cues of different affinities. J Neurosci 6: 1781–1795. 10.1523/JNEUROSCI.06-06-01781.1986 CASPubMedWeb of Science®Google Scholar Chakraborty T, Ebel F, Domann E, Niebuhr K, Gerstel B, Pistor S, Temm-Grove CJ, Jockusch BM, Reinhard M, Walter U. 1995. A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. Embo J 14: 1314–1321. 10.1002/j.1460-2075.1995.tb07117.x CASPubMedWeb of Science®Google Scholar Challacombe JF, Snow DM, Letourneau PC. 1997. Dynamic microtubule ends are required for growth cone turning to avoid an inhibitory guidance cue. J Neurosci 17: 3085–3095. 10.1523/JNEUROSCI.17-09-03085.1997 CASPubMedWeb of Science®Google Scholar Choquet D, Felsenfeld DP, Sheetz MP. 1997. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88: 39–48. 10.1016/S0092-8674(00)81856-5 CASPubMedWeb of Science®Google Scholar Chrzanowska-Wodnicka M, Burridge K. 1996. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133: 1403–1415. 10.1083/jcb.133.6.1403 CASPubMedWeb of Science®Google Scholar Cypher C, Letourneau PC. 1991. Identification of cytoskeletal, focal adhesion, and cell adhesion proteins in growth cone particles isolated from developing chick brain. J Neurosci Res 30: 259–265. 10.1002/jnr.490300126 CASPubMedWeb of Science®Google Scholar Davis JQ, Bennett V. 1994. Ankyrin binding activity shared by the neurofascin/L1/NrCAM family of nervous system cell adhesion molecules. J Biol Chem 269: 27163–27166. CASPubMedWeb of Science®Google Scholar Dennerll TJ, Joshi HC, Steel VL, Buxbaum RE, Heidemann SR. 1988. Tension and compression in the cytoskeleton of PC-12 neurites. II: quantitative measurements. J Cell Biol 107: 665–674. 10.1083/jcb.107.2.665 CASPubMedWeb of Science®Google Scholar Dent EW, Callaway JL, Szebenyi G, Baas PW, Kalil K. 1999. Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches. J Neurosci 19: 8894–8908. 10.1523/JNEUROSCI.19-20-08894.1999 CASPubMedWeb of Science®Google Scholar Doherty P, Walsh FS. 1996. CAM-FGF receptor interactions: a model for axonal growth. Mol Cell Neurosci 8: 99–111. 10.1006/mcne.1996.0049 CASWeb of Science®Google Scholar Dramsi S, Cossart P. 1998. Intracellular pathogens and the actin cytoskeleton. Annu Rev Cell Dev Biol 14: 137–166. 10.1146/annurev.cellbio.14.1.137 CASPubMedWeb of Science®Google Scholar Drazba J, Liljelund P, Smith C, Payne R, Lemmon V. 1997. Growth cone interactions with purified cell and substrate adhesion molecules visualized by interference reflection microscopy. Brain Res Dev Brain Res 100: 183–197. 10.1016/S0165-3806(97)00041-2 CASPubMedWeb of Science®Google Scholar Dubreuil RR, MacVicar G, Dissanayake S, Liu C, Homer D, Hortsch M. 1996. Neuroglian-mediated cell adhesion induces assembly of the membrane skeleton at cell contact sites. J Cell Biol 133: 647–655. 10.1083/jcb.133.3.647 CASPubMedWeb of Science®Google Scholar Faivre-Sarrailh C, Falk J, Pollerberg E, Schachner M, Rougon G. 1999. NrCAM, cerebellar granule cell receptor for the neuronal adhesion molecule F3, displays an actin-dependent mobility in growth cones. J Cell Sci 112: 3015–3027. CASPubMedWeb of Science®Google Scholar Felsenfeld DP, Choquet D, Sheetz MP. 1996. Ligand binding regulates the directed movement of beta1 integrins on fibroblasts. Nature 383: 438–440. 10.1038/383438a0 CASPubMedWeb of Science®Google Scholar Felsenfeld DP, Schwartzberg PL, Venegas A, Tse R, Sheetz MP. 1999. Selective regulation of integrin-cytoskeleton interactions by the tyrosine kinase Src. Nature Cell Biology 1: 200–206. 10.1038/12021 CASPubMedWeb of Science®Google Scholar Forscher P, Kaczmarek LK, Buchanan JA, Smith SJ. 1987. Cyclic AMP induces changes in distribution and transport of organelles within growth cones of Aplysia bag cell neurons. J Neurosci 7: 3600–3611. 10.1523/JNEUROSCI.07-11-03600.1987 CASPubMedWeb of Science®Google Scholar Forscher P, Smith SJ. 1988. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J Cell Biol 107: 1505–1516. 10.1083/jcb.107.4.1505 CASPubMedWeb of Science®Google Scholar Garver TD, Ren Q, Tuvia S, Bennett V. 1997. Tyrosine phosphorylation at a site highly conserved in the L1 family of cell adhesion molecules abolishes ankyrin binding and increases lateral mobility of neurofascin. J Cell Biol 137: 703–714. 10.1083/jcb.137.3.703 CASPubMedWeb of Science®Google Scholar Gertler FB, Niebuhr K, Reinhard M, Wehland J, Soriano P. 1996. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87: 227–239. 10.1016/S0092-8674(00)81341-0 CASPubMedWeb of Science®Google Scholar Ginsberg MH, Du X, Plow EF. 1992. Inside-out integrin signalling. Curr Opin Cell Biol 4: 766–771. 10.1016/0955-0674(92)90099-X CASPubMedGoogle Scholar Goldberg DJ, Burmeister DW. 1986. Stages in axon formation: observations of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy. J Cell Biol 103: 1921–1931. 10.1083/jcb.103.5.1921 CASPubMedWeb of Science®Google Scholar Gomez TM, Roche FK, Letourneau PC. 1996. Chick sensory neuronal growth cones distinguish fibronectin from laminin by making substratum contacts that resemble focal contacts. J Neurobiol 29: 18–34. 10.1002/(SICI)1097-4695(199601)29:1 3.0.CO;2-A CASPubMedWeb of Science®Google Scholar Goodman CS. 1996. Mechanisms and molecules that control growth cone guidance. Annu Rev Neurosci 19: 341–377. 10.1146/annurev.ne.19.030196.002013 CASPubMedWeb of Science®Google Scholar Gordon-Weeks PR. 1987. The cytoskeletons of isolated, neuronal growth cones. Neuroscience 21: 977–989. 10.1016/0306-4522(87)90052-2 CASPubMedWeb of Science®Google Scholar Hammarback JA, McCarthy JB, Palm SL, Furcht LT, Letourneau PC. 1988. Growth cone guidance by substrate-bound laminin pathways is correlated with neuron-to-pathway adhesivity. Dev Biol 126: 29–39. 10.1016/0012-1606(88)90235-7 CASPubMedWeb of Science®Google Scholar Hasson T, Mooseker M. 1997. The growing family of myosin motors and their role in neurons and sensory cells. Curr Opin Neurobiol 7: 615–623. 10.1016/S0959-4388(97)80080-3 CASPubMedWeb of Science®Google Scholar Hatta K, Takagi S, Fujisawa H, Takeichi M. 1987. Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev Biol 120: 215–227. 10.1016/0012-1606(87)90119-9 CASPubMedWeb of Science®Google Scholar Heidemann SR. 1996. Cytoplasmic mechanisms of axonal and dendritic growth in neurons. Int Rev Cytol 165: 235–296. 10.1016/S0074-7696(08)62224-X CASPubMedWeb of Science®Google Scholar Helmke S, Pfenninger KH. 1995. Growth cone enrichment and cytoskeletal association of non-receptor tyrosine kinases. Cell Motil Cytoskeleton 30: 194–207. 10.1002/cm.970300304 CASPubMedWeb of Science®Google Scholar Hoang B, Chiba A. 1998. Genetic analysis on the role of integrin during axon guidance in Drosophila. J Neurosci 18: 7847–7855. 10.1523/JNEUROSCI.18-19-07847.1998 CASPubMedWeb of Science®Google Scholar Hoffman S, Sorkin BC, White PC, Brackenbury R, Mailhammer R, Rutishauser U, Cunningham BA, Edelman GM. 1982. Chemical characterization of a neural cell adhesion molecule purified from embryonic brain membranes. J Biol Chem 257: 7720–7729. CASPubMedWeb of Science®Google Scholar Huttenlocher A, Ginsberg MH, Horwitz AF. 1996. Modulation of cell migration by integrin-mediated cytoskeletal linkages and ligand-binding affinity. J Cell Biol 134: 1551–1562. 10.1083/jcb.134.6.1551 CASPubMedWeb of Science®Google Scholar Hynes RO. 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69: 11–25. 10.1016/0092-8674(92)90115-S CASPubMedWeb of Science®Google Scholar Hynes RO, Lander AD. 1992. Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell 68: 303–322. 10.1016/0092-8674(92)90472-O CASPubMedWeb of Science®Google Scholar Joshi HC, Chu D, Buxbaum RE, Heidemann SR. 1985. Tension and compression in the cytoskeleton of PC 12 neurites. J Cell Biol 101: 697–705. 10.1083/jcb.101.3.697 CASPubMedWeb of Science®Google Scholar Kang F, Laine RO, Bubb MR, Southwick FS, Purich DL. 1997. Profilin interacts with the Gly-Pro-Pro-Pro-Pro-Pro sequences of vasodilator-stimulated phosphoprotein (VASP): implications for actin-based Listeria motility. Biochemistry 36: 8384–8392. 10.1021/bi970065n CASPubMedWeb of Science®Google Scholar Kennedy TE, Tessier-Lavigne M. 1995. Guidance and induction of branch formation in developing axons by target-derived diffusible factors. Curr Opin Neurobiol 5: 83–90. 10.1016/0959-4388(95)80091-3 CASPubMedGoogle Scholar Kuhn TB, Schmidt MF, Kater SB. 1995. Laminin and fibronectin guideposts signal sustained but opposite effects to passing growth cones. Neuron 14: 275–285. 10.1016/0896-6273(95)90285-6 CASPubMedWeb of Science®Google Scholar Kuhn TB, Williams CV, Dou P, Kater SB. 1998. Laminin directs growth cone navigation via two temporally and functionally distinct calcium signals. J Neurosci 18: 184–194. CASPubMedWeb of Science®Google Scholar Kunz S, Spirig M, Ginsburg C, Buchstaller A, Berger P, Lanz R, Rader C, Vogt L, Kunz B, Sonderegger P. 1998. Neurite fasciculation mediated by complexes of axonin-1 and Ng cell adhesion molecule. J Cell Biol 143: 1673–1690. 10.1083/jcb.143.6.1673 CASPubMedWeb of Science®Google Scholar Kunz S, Ziegler U, Kunz B, Sonderegger P. 1996. Intracellular signaling is changed after clustering of the neural cell adhesion molecules axonin-1 and NgCAM during neurite fasciculation. J Cell Biol 135: 253–267. 10.1083/jcb.135.1.253 CASPubMedWeb of Science®Google Scholar Lamoureux P, Buxbaum RE, Heidemann SR. 1989. Direct evidence that growth cones pull. Nature 340: 159–162. 10.1038/340159a0 CASPubMedWeb of Science®Google Scholar Lanier LM, Gates MA, Witke W, Menzies AS, Wehman AM, Macklis JD, Kwiatkowski D, Soriano P, Gertler FB. 1999. Mena is required for neurulation and commissure formation. Neuron 22: 313–325. 10.1016/S0896-6273(00)81092-2 CASPubMedWeb of Science®Google Scholar Lappalainen P, Drubin DG. 1997. Cofilin promotes rapid actin filament turnover in vivo. Nature 388: 78–82. 10.1038/40418 CASPubMedWeb of Science®Google Scholar Letourneau PC. 1996. The cytoskeleton in nerve growth cone motility and axonal pathfinding. Perspect Dev Neurobiol 4: 111–123. CASPubMedWeb of Science®Google Scholar Letourneau PC, Shattuck TA, Ressler AH. 1987. “Pull” and “push” in neurite elongation: observations on the effects of different concentrations of cytochalasin B and taxol. Cell Motil Cytoskeleton 8: 193–209. 10.1002/cm.970080302 CASPubMedWeb of Science®Google Scholar Lewis AK, Bridgman PC. 1992. Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity. J Cell Biol 119: 1219–1243. 10.1083/jcb.119.5.1219 CASPubMedWeb of Science®Google Scholar Lin CH, Espreafico EM, Mooseker MS, Forscher P. 1996. Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron 16: 769–782. 10.1016/S0896-6273(00)80097-5 CASPubMedWeb of Science®Google Scholar Lin CH, Forscher P. 1993. Cytoskeletal remodeling during growth cone-target interactions. J Cell Biol 121: 1369–1383. 10.1083/jcb.121.6.1369 CASPubMedWeb of Science®Google Scholar Lin C-H, Forscher P. 1995. Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron 14: 763–771. 10.1016/0896-6273(95)90220-1 CASPubMedWeb of Science®Google Scholar Lin CH, Thompson CA, Forscher P. 1994. Cytoskeletal reorganization underlying growth cone motility. Curr Opin Neurobiol 4: 640–647. 10.1016/0959-4388(94)90004-3 CASPubMedGoogle Scholar Lu M, Witke W, Kwiatkowski DJ, Kosik KS. 1997. Delayed retraction of filopodia in gelsolin null mice. J Cell Biol 138: 1279–1287. 10.1083/jcb.138.6.1279 CASPubMedWeb of Science®Google Scholar Luo Y, Raible D, Raper JA. 1993. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75: 217–227. 10.1016/0092-8674(93)80064-L CASPubMedWeb of Science®Google Scholar Ma L, Rohatgi R, Kirschner MW. 1998. The Arp2/3 complex mediates actin polymerization induced by the small GTP-binding protein Cdc42. Proc Natl Acad Sci U S A 95: 15362–15367. 10.1073/pnas.95.26.15362 CASPubMedWeb of Science®Google Scholar Machesky LM, Insall RH. 1998. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol 8: 1347–1356. 10.1016/S0960-9822(98)00015-3 CASPubMedWeb of Science®Google Scholar Malhotra JD, Tsiotra P, Karagogeos D, Hortsch M. 1998. Cis-activation of L1-mediated ankyrin recruitment by TAG-1 homophilic cell adhesion. J Biol Chem 273: 33354–33359. 10.1074/jbc.273.50.33354 CASPubMedWeb of Science®Google Scholar Mallavarapu A, Mitchison T. 1999. Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J Cell Biol 146: 1097–1106. 10.1083/jcb.146.5.1097 CASPubMedWeb of Science®Google Scholar Matsuyoshi N, Hamaguchi M, Taniguchi S, Nagafuchi A, Tsukita S, Takeichi M. 1992. Cadherin-mediated cell-cell adhesion is perturbed by v-src tyrosine phosphorylation in metastatic fibroblasts. J Cell Biol 118: 703–714. 10.1083/jcb.118.3.703 CASPubMedWeb of Science®Google Scholar Mayford M, Barzilai A, Keller F, Schacher S, Kandel ER. 1992. Modulation of an NCAM-related adhesion molecule with long-term synaptic plasticity in Aplysia. Science 256: 638–644. 10.1126/science.1585176 CASPubMedWeb of Science®Google Scholar Meberg PJ, Ono S, Minamide LS, Takahashi M, Bamburg JR. 1998. Actin depolymerizing factor and cofilin phosphorylation dynamics: response to signals that regulate neurite extension. Cell Motil Cytoskeleton 39: 172–190. 10.1002/(SICI)1097-0169(1998)39:2 3.0.CO;2-8 CASPubMedWeb of Science®Google Scholar Miki H, Miura K, Takenawa T. 1996. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. Embo J 15: 5326–5335. 10.1002/j.1460-2075.1996.tb00917.x PubMedWeb of Science®Google Scholar Miki H, Sasaki T, Takai Y, Takenawa T. 1998. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391: 93–96. 10.1038/34208 CASPubMedWeb of Science®Google Scholar Miller M, Bower E, Levitt P, Li D, Chantler PD. 1992. Myosin II distribution in neurons is consistent with a role in growth cone motility but not synaptic vesicle mobilization. Neuron 8: 25–44. 10.1016/0896-6273(92)90106-N CASPubMedWeb of Science®Google Scholar Mitchison T, Kirschner M. 1988. Cytoskeletal dynamics and nerve growth. Neuron 1: 761–772. 10.1016/0896-6273(88)90124-9 CASPubMedWeb of Science®Google Scholar Mitchison TJ, Cramer LP. 1996. Actin-based cell motility and cell locomotion. Cell 84: 371–379. 10.1016/S0092-8674(00)81281-7 CASPubMedWeb of Science®Google Scholar Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, Akiyama SK, Yamada KM. 1995. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol 131: 791–805. 10.1083/jcb.131.3.791 CASPubMedWeb of Science®Google Scholar Neugebauer KM, Tomaselli KJ, Lilien J, Reichardt LF. 1988. N-cadherin, NCAM, and integrins promote retinal neurite outgrowth on astrocytes in vitro. J Cell Biol 107: 1177–1187. 10.1083/jcb.107.3.1177 CASPubMedWeb of Science®Google Scholar Okabe S, Hirokawa N. 1991. Actin dynamics in growth cones. J Neurosci 11: 1918–1929. 10.1523/JNEUROSCI.11-07-01918.1991 CASPubMedWeb of Science®Google Scholar Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF. 1997. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385: 537–540. 10.1038/385537a0 CASPubMedWeb of Science®Google Scholar Pantaloni D, Carlier MF. 1993. How profilin promotes actin filament assembly in the presence of thymosin beta 4. Cell 75: 1007–1014. 10.1016/0092-8674(93)90544-Z CASPubMedWeb of Science®Google Scholar Payne HR, Burden SM, Lemmon V. 1992. Modulation of growth cone morphology by substrate-bound adhesion molecules. Cell Motil Cytoskeleton 21: 65–73. 10.1002/cm.970210108 CASPubMedWeb of Science®Google Scholar Ramon y Cajal S. 1890. Sobre la aparicion de las expansionas cellulares en la medula embrionaria. Gaceta Sanitaria de Barcelona 413–419. Google Scholar Reichardt LF, Tomaselli KJ. 1991. Extracellular matrix molecules and their receptors: functions in neural development. Annu Rev Neurosci 14: 531–570. 10.1146/annurev.ne.14.030191.002531 CASPubMedWeb of Science®Google Scholar Riehl R, Johnson K, Bradley R, Grunwald GB, Cornel E, Lilienbaum A, Holt CE. 1996. Cadherin function is required for axon outgrowth in retinal ganglion cells in vivo. Neuron 17: 837–848. 10.1016/S0896-6273(00)80216-0 CASPubMedWeb of Science®Google Scholar Rochlin MW, Itoh K, Adelstein RS, Bridgman PC. 1995. Localization of myosin II A and B isoforms in cultured neurons. J Cell Sci 108: 3661–3670. CASPubMedWeb of Science®Google Scholar Rochlin MW, Wickline KM, Bridgman PC. 1996. Microtubule stability decreases axon elongation but not axoplasm production. J Neurosci 16: 3236–3246. 10.1523/JNEUROSCI.16-10-03236.1996 CASPubMedWeb of Science®Google Scholar Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW. 1999. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97: 221–231. 10.1016/S0092-8674(00)80732-1 CASPubMedWeb of Science®Google Scholar Rosenblatt J, Agnew BJ, Abe H, Bamburg JR, Mitchison TJ. 1997. Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails. J Cell Biol 136: 1323–1332. 10.1083/jcb.136.6.1323 CASPubMedWeb of Science®Google Scholar Schmidt CE, Dai J, Lauffenburger DA, Sheetz MP, Horwitz AF. 1995. Integrin-cytoskeletal interactions in neuronal growth cones. J Neurosci 15: 3400–3407. 10.1523/JNEUROSCI.15-05-03400.1995 CASPubMedWeb of Science®Google Scholar Schmidt CE, Horwitz AF, Lauffenburger DA, Sheetz MP. 1993. Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J Cell Biol 123: 977–991. 10.1083/jcb.123.4.977 CASPubMedWeb of Science®Google Scholar Schoenwaelder SM, Burridge K. 1999. Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol 11: 274–286. 10.1016/S0955-0674(99)80037-4 CASPubMedWeb of Science®Google Scholar Scotland P, Zhou D, Benveniste H, Bennett V. 1998. Nervous system defects of AnkyrinB (−/−) mice suggest functional overlap between the cell adhesion molecule L1 and 440-kD AnkyrinB in premyelinated axons. J Cell Biol 143: 1305–1315. 10.1083/jcb.143.5.1305 CASPubMedWeb of Science®Google Scholar Smilenov LB, Mikhailov A, Pelham RJ, Marcantonio EE, Gundersen GG. 1999. Focal adhesion motility revealed in stationary fibroblasts. Science 286: 1172–1174. 10.1126/science.286.5442.1172 CASPubMedWeb of Science®Google Scholar Stoeckli ET, Landmesser LT. 1995. Axonin-1, Nr-CAM, and Ng-CAM play different roles in the in vivo guidance of chick commissural neurons. Neuron 14: 1165–1179. 10.1016/0896-6273(95)90264-3 CASPubMedWeb of Science®Google Scholar Stoeckli ET, Ziegler U, Bleiker AJ, Groscurth P, Sonderegger P. 1996. Clustering and functional cooperation of Ng-CAM and axonin-1 in the substratum-contact area of growth cones. Dev Biol 177: 15–29. 10.1006/dbio.1996.0141 CASPubMedWeb of Science®Google Scholar Stossel TP. 1993. On the crawling of animal cells. Science 260: 1086–1094. 10.1126/science.8493552 CASPubMedWeb of Science®Google Scholar Suter DM, Errante LD, Belotserkovsky V, Forscher P. 1998. The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling. J Cell Biol 141: 227–240. 10.1083/jcb.141.1.227 CASPubMedWeb of Science®Google Scholar Suter DM, Forscher P. 1998. An emerging link between cytoskeletal dynamics and cell adhesion molecules in growth cone guidance. Curr Opin Neurobiol 8: 106–116. 10.1016/S0959-4388(98)80014-7 CASPubMedWeb of Science®Google Scholar Svitkina TM, Verkhovsky AB, McQuade KM, Borisy GG. 1997. Analysis of the actin-myosin II system in fish epidermal keratocytes—mechanism of cell body translocation. J Cell Biol 139: 397–415. 10.1083/jcb.139.2.397 CASPubMedWeb of Science®Google Scholar Sydor AM, Su AL, Wang FS, Xu A, Jay DG. 1996. Talin and vinculin play distinct roles in filopodial motility in the neuronal growth cone. J Cell Biol 134: 1197–1207. 10.1083/jcb.134.5.1197 CASPubMedWeb of Science®Google Scholar Takeichi M, Uemura T, Iwai Y, Uchida N, Inoue T, Tanaka T, Suzuki SC. 1997. Cadherins in brain patterning and neural network formation. Cold Spring Harb Symp Quant Biol 62: 505–510. 10.1101/SQB.1997.062.01.057 CASPubMedWeb of Science®Google Scholar Tanaka E, Ho T, Kirschner MW. 1995. The role of microtubule dynamics in growth cone motility and axonal growth. J Cell Biol 128: 139–155. 10.1083/jcb.128.1.139 CASPubMedWeb of Science®Google Scholar Tanaka E, Kirschner MW. 1995. The role of microtubules in growth cone turning at substrate boundaries. J Cell Biol 128: 127–137. 10.1083/jcb.128.1.127 CASPubMedWeb of Science®Google Scholar Tanaka E, Sabry J. 1995. Making the connection: cytoskeletal rearrangements during growth cone guidance. Cell 83: 171–176. 10.1016/0092-8674(95)90158-2 CASPubMedWeb of Science®Google Scholar Tanaka EM, Kirschner MW. 1991. Microtubule behavior in the growth cones of living neurons during axon elongation. J Cell Biol 115: 345–363. 10.1083/jcb.115.2.345 CASPubMedWeb of Science®Google Scholar Tessier-Lavigne M, Goodman CS. 1996. The molecular biology of axon guidance. Science 274: 1123–1133. 10.1126/science.274.5290.1123 CASPubMedWeb of Science®Google Scholar Thompson C, Lin CH, Forscher P. 1996. An Aplysia cell adhesion molecule associated with site-directed actin filament assembly in neuronal growth cones. J Cell Sci 109: 2843–2854. CASPubMedWeb of Science®Google Scholar Tomaselli KJ, Neugebauer KM, Bixby JL, Lilien J, Reichardt LF. 1988. N-cadherin and integrins: two receptor systems that mediate neuronal process outgrowth on astrocyte surfaces. Neuron 1: 33–43. 10.1016/0896-6273(88)90207-3 CASPubMedWeb of Science®Google Scholar Tosney KW, Wessells NK. 1983. Neuronal motility: the ultrastructure of veils and microspikes correlates with their motile activities. J Cell Sci 61: 389–411. CASPubMedWeb of Science®Google Scholar Varnum-Finney B, Reichardt LF. 1994. Vinculin-deficient PC12 cell lines extend unstable lamellipodia and filopodia and have a reduced rate of neurite outgrowth. J Cell Biol 127: 1071–1084. 10.1083/jcb.127.4.1071 CASPubMedWeb of Science®Google Scholar Walsh FS, Doherty P. 1997. Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance. Annu Rev Cell Dev Biol 13: 425–456. 10.1146/annurev.cellbio.13.1.425 CASPubMedWeb of Science®Google Scholar Waterman-Storer CM, Salmon ED. 1997. Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J Cell Biol 139: 417–434. 10.1083/jcb.139.2.417 CASPubMedWeb of Science®Google Scholar Welch MD, DePace AH, Verma S, Iwamatsu A, Mitchison TJ. 1997a. The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J Cell Biol 138: 375–384. 10.1083/jcb.138.2.375 CASPubMedWeb of Science®Google Scholar Welch MD, Iwamatsu A, Mitchison TJ. 1997b. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385: 265–269. 10.1038/385265a0 CASPubMedWeb of Science®Google Scholar Welch MD, Mallavarapu A, Rosenblatt J, Mitchison TJ. 1997c. Actin dynamics in vivo. Curr Opin Cell Biol 9: 54–61. 10.1016/S0955-0674(97)80152-4 CASPubMedWeb of Science®Google Scholar Williams AF, Barclay AN. 1988. The immunoglobulin superfamily—domains for cell surface recognition. Annu Rev Immunol 6: 381–405. 10.1146/annurev.iy.06.040188.002121 CASPubMedWeb of Science®Google Scholar Williamson T, Gordon-Weeks PR, Schachner M, Taylor J. 1996. Microtubule reorganization is obligatory for growth cone turning. Proc Natl Acad Sci USA 93: 15221–15226. 10.1073/pnas.93.26.15221 CASPubMedWeb of Science®Google Scholar Wills Z, Bateman J, Korey CA, Comer A, Van Vactor D. 1999a. The tyrosine kinase Abl and its substrate enabled collaborate with the receptor phosphatase Dlar to control motor axon guidance. Neuron 22: 301–312. 10.1016/S0896-6273(00)81091-0 CASPubMedWeb of Science®Google Scholar Wills Z, Marr L, Zinn K, Goodman CS, Van Vactor D. 1999b. Profilin and the Abl tyrosine kinase are required for motor axon outgrowth in the Drosophila embryo. Neuron 22: 291–299. 10.1016/S0896-6273(00)81090-9 CASPubMedWeb of Science®Google Scholar Wu DY, Wang LC, Mason CA, Goldberg DJ. 1996. Association of beta 1 integrin with phosphotyrosine in growth cone filopodia. J Neurosci 16: 1470–1478. CASPubMedWeb of Science®Google Scholar Yamada KM, Spooner BS, Wessells NK. 1970. Axon growth: roles of microfilaments and microtubules. Proc Natl Acad Sci U S A 66: 1206–1212. 10.1073/pnas.66.4.1206 CASPubMedWeb of Science®Google Scholar Yamada KM, Spooner BS, Wessells NK. 1971. Ultrastructure and function of growth cones and axons of cultured nerve cells. J Cell Biol 49: 614–635. 10.1083/jcb.49.3.614 CASPubMedWeb of Science®Google Scholar Yin HL, Stossel TP. 1979. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature 281: 583–586. 10.1038/281583a0 CASPubMedWeb of Science®Google Scholar Citing Literature Volume44, Issue2Special Issue:Growth ConesAugust 2000Pages 97-113 ReferencesRelatedInformation
Referência(s)