Artigo Revisado por pares

Enantioselective Synthesis of Quaternary Carbon Stereogenic Centers through Copper‐Catalyzed Conjugate Additions of Aryl‐ and Alkylaluminum Reagents to Acyclic Trisubstituted Enones

2013; Wiley; Volume: 125; Issue: 31 Linguagem: Inglês

10.1002/ange.201304035

ISSN

1521-3757

Autores

Jennifer A. Dabrowski, Matthew T. Villaume, Amir H. Hoveyda,

Tópico(s)

Asymmetric Hydrogenation and Catalysis

Resumo

Angewandte ChemieVolume 125, Issue 31 p. 8314-8317 Zuschrift Enantioselective Synthesis of Quaternary Carbon Stereogenic Centers through Copper-Catalyzed Conjugate Additions of Aryl- and Alkylaluminum Reagents to Acyclic Trisubstituted Enones† Jennifer A. Dabrowski, Jennifer A. Dabrowski Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)Search for more papers by this authorMatthew T. Villaume, Matthew T. Villaume Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)Search for more papers by this authorProf. Amir H. Hoveyda, Corresponding Author Prof. Amir H. Hoveyda [email protected] Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)Search for more papers by this author Jennifer A. Dabrowski, Jennifer A. Dabrowski Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)Search for more papers by this authorMatthew T. Villaume, Matthew T. Villaume Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)Search for more papers by this authorProf. Amir H. Hoveyda, Corresponding Author Prof. Amir H. Hoveyda [email protected] Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)Search for more papers by this author First published: 18 June 2013 https://doi.org/10.1002/ange.201304035Citations: 9 † Financial support was provided by the NIH (GM-47480); J.A.D. is grateful for a LaMattina Graduate Fellowship. We thank E. M. Vieira for helpful suggestions. Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Acyclische quartäre Zentren durch konjugierte Addition: Die ersten Beispiele katalytischer enantioselektiver konjugierter Additionen von Aryl- und Alkylgruppen zur Bildung acyclischer quartärer stereogener Zentren wurden entwickelt (siehe Schema). Die benötigten Organoaluminiumreagentien können entweder in situ aus leicht erhältlichen Organolithiumverbindungen hergestellt werden oder sind preiswert verfügbar. Supporting Information As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Filename Description ange_201304035_sm_miscellaneous_information.pdf1.8 MB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1For scholarly reviews on catalytic ECA reactions and their utility in chemical synthesis, see: Google Scholar 1aS. R. Harutyunyan, T. den Hartog, K. Geurts, A. J. Minnaard, B. L. Feringa, Chem. Rev. 2008, 108, 2824; 10.1021/cr068424k CASPubMedWeb of Science®Google Scholar 1bT. Jerphagnon, M. G. Pizzuti, A. J. Minnaard, B. L. Feringa, Chem. Soc. Rev. 2009, 38, 1039; 10.1039/b816853a CASPubMedWeb of Science®Google Scholar 1cJ.-X. Ji, A. S. C. Chan in Catalytic Asymmetric Synthesis (Ed.: ), Wiley, Hoboken, 2010, p. 439. Google Scholar 2For a comprehensive review of enantioselective synthesis of quaternary carbon stereogenic centers within acyclic molecules, see: J. P. Das, I. Marek, Chem. Commun. 2011, 47, 4593. 10.1039/c0cc05222a CASPubMedWeb of Science®Google Scholar 3For catalytic ECA with acyclic substrates that involve alkylmetal reagents, affording quaternary carbon stereogenic centers, see: Google Scholar 3aJ. Wu, D. M. Mampreian, A. H. Hoveyda, J. Am. Chem. Soc. 2005, 127, 4584; 10.1021/ja050800f CASPubMedWeb of Science®Google Scholar 3bE. Fillion, A. Wilsily, J. Am. Chem. Soc. 2006, 128, 2774; 10.1021/ja056692e CASPubMedWeb of Science®Google Scholar 3cP. Mauleón, J. C. Carretero, Chem. Commun. 2005, 4961; 10.1039/b508142d CASPubMedWeb of Science®Google Scholar 3dA. Wilsily, E. Fillion, Org. Lett. 2008, 10, 2801; 10.1021/ol800923q CASPubMedWeb of Science®Google Scholar 3eA. Wilsily, E. Fillion, J. Org. Chem. 2009, 74, 8583. For related studies involving nitroalkanes as reagents, see: 10.1021/jo901559d CASPubMedWeb of Science®Google Scholar 3fH. Kawai, Z. Yuan, T. Kitayama, E. Tokunaga, N. Shibata, Angew. Chem. 2013, 125, 5685; 10.1002/ange.201301123 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 5575. For catalytic ECA leading to quaternary carbon stereogenic centers with cyanide as the nucleophilic agent, see: 10.1002/anie.201301123 CASPubMedWeb of Science®Google Scholar 3gC. Mazet, E. N. Jacobsen, Angew. Chem. 2008, 120, 1786; 10.1002/ange.200704461 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 1762; 10.1002/anie.200704461 CASPubMedWeb of Science®Google Scholar 3hY. Tanaka, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2010, 132, 8862. 10.1021/ja1035286 CASPubMedWeb of Science®Google Scholar 4For catalytic ECA with cyclic substrates that involve alkylmetal reagents, affording quaternary carbon stereogenic centers, see: Google Scholar 4aA. W. Hird, A. H. Hoveyda, J. Am. Chem. Soc. 2005, 127, 14988; 10.1021/ja0553811 CASPubMedWeb of Science®Google Scholar 4bM. d’Augustin, L. Palais, A. Alexakis, Angew. Chem. 2005, 117, 1400; 10.1002/ange.200462137 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 1376; 10.1002/anie.200462137 CASPubMedWeb of Science®Google Scholar 4cK- ;s. Lee, M. K. Brown, A. W. Hird, A. H. Hoveyda, J. Am. Chem. Soc. 2006, 128, 7182; 10.1021/ja062061o CASPubMedWeb of Science®Google Scholar 4dD. Martin, S. Kehrli, M. d’Augustin, H. Clavier, M. Mauduit, A. Alexakis, J. Am. Chem. Soc. 2006, 128, 8416; 10.1021/ja0629920 CASPubMedWeb of Science®Google Scholar 4eM. K. Brown, T. L. May, C. A. Baxter, A. H. Hoveyda, Angew. Chem. 2007, 119, 1115; 10.1002/ange.200604511 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 1097; 10.1002/anie.200604511 CASPubMedWeb of Science®Google Scholar 4fT. L. May, M. K. Brown, A. H. Hoveyda, Angew. Chem. 2008, 120, 7468; 10.1002/ange.200802910 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 7358; 10.1002/anie.200802910 CASPubMedWeb of Science®Google Scholar 4gY. Matsumoto, K.-i. Yamada, K. Tomioka, J. Org. Chem. 2008, 73, 4578; 10.1021/jo800613h CASPubMedWeb of Science®Google Scholar 4hC. Ladjel, N. Fuchs, J. Zhao, G. Bernardinelli, A. Alexakis, Eur. J. Org. Chem. 2009, 4949; 10.1002/ejoc.200900662 CASWeb of Science®Google Scholar 4iS. Kehrli, D. Martin, D. Rix, M. Mauduit, A. Alexakis, Chem. Eur. J. 2010, 16, 9890. For related studies involving nitroalkanes as reagents, see: 10.1002/chem.201000471 CASPubMedWeb of Science®Google Scholar 4jP. Kwiatkowski, K. Dudziński, D. Łyźwa, Org. Lett. 2011, 13, 3624. 10.1021/ol201275h CASPubMedWeb of Science®Google Scholar 5For catalytic ECA involving alkenyl-based nucleophiles and cyclic enones to afford quaternary carbon stereogenic centers, see: T. L. May, J. A. Dabrowski, A. H. Hoveyda, J. Am. Chem. Soc. 2011, 133, 736. 10.1021/ja110054q CASPubMedWeb of Science®Google Scholar 6For catalytic ECA with aryl-based nucleophiles and cyclic substrates to generate quaternary carbon stereogenic centers, see: with Rh-based catalysts and arylboronic acids, Google Scholar 6aR. Shintani, W.-L. Duan, T. Hayashi, J. Am. Chem. Soc. 2006, 128, 5628; with Cu-based catalysts and arylaluminum reagents, 10.1021/ja061430d CASPubMedWeb of Science®Google Scholar 6bRef. [4f]; Google Scholar 6cC. Hawner, K. Li, V. Cirriez, A. Alexakis, Angew. Chem. 2008, 120, 8334; 10.1002/ange.200803436 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 8211; with Rh-based catalysts and sodium tetraarylborates, 10.1002/anie.200803436 CASPubMedWeb of Science®Google Scholar 6dR. Shintani, Y. Tsutsumi, M. Nagaosa, T. Nishimura, T. Hayashi, J. Am. Chem. Soc. 2009, 131, 13588; with Rh-based catalysts and triarylboroxines, 10.1021/ja905432x CASPubMedWeb of Science®Google Scholar 6eR. Shintani, M. Takeda, T. Nishimura, T. Hayashi, Angew. Chem. 2010, 122, 4061; 10.1002/ange.201000467 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 3969; with Rh-based catalysts and arylaluminum reagents, 10.1002/anie.201000467 CASPubMedGoogle Scholar 6fC. Hawner, D. Müller, L. Gremaud, A. Felouat, S. Woodward, A. Alexakis, Angew. Chem. 2010, 122, 7935; 10.1002/ange.201003300 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 7769; with Pd-based catalysts and arylboronic acids, 10.1002/anie.201003300 CASPubMedWeb of Science®Google Scholar 6gK. Kikushima, J. C. Holder, M. Gatti, B. M. Stoltz, J. Am. Chem. Soc. 2011, 133, 6902; 10.1021/ja200664x CASPubMedWeb of Science®Google Scholar 6hA. L. Gottumukkala, K. Matcha, M. Lutz, J. G. de Vries, A. J. Minnaard, Chem. Eur. J. 2012, 18, 6907. 10.1002/chem.201200694 CASPubMedWeb of Science®Google Scholar 7For applications of catalytic ECA reactions, which afford quaternary carbon stereogenic centers, to natural product synthesis (all involve cyclic enones), see: Google Scholar 7aM. K. Brown, A. H. Hoveyda, J. Am. Chem. Soc. 2008, 130, 12904; 10.1021/ja8058414 CASPubMedWeb of Science®Google Scholar 7bK. M. Peese, D. Y. Gin, Chem. Eur. J. 2008, 14, 1654; 10.1002/chem.200701290 CASPubMedWeb of Science®Google Scholar 7cRef. [5]; Google Scholar 7dA. Mendoza, Y. Ishihara, P. S. Baran, Nat. Chem. 2012, 4, 21; 10.1038/nchem.1196 CASWeb of Science®Google Scholar 7eRef. [6h]. Google Scholar 8R. Shintani, T. Hayashi, Org. Lett. 2011, 13, 350. 10.1021/ol102674z CASPubMedWeb of Science®Google Scholar 9K. Endo, D. Hamada, S. Yakeishi, T. Shibata, Angew. Chem. 2013, 125, 634; 10.1002/ange.201206297 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 606. 10.1002/anie.201206297 CASPubMedWeb of Science®Google Scholar 10The enantiomerically enriched carboxylic acid was prepared in seven steps including a resolution; see: A. Badorc, J. Courregelongue, D. Ducros, D. Frehel, A. Giudice, C. Serradeil-Legal, Patent No. US 005252749A, 1993. Google Scholar 11S. Brown, Q. Cao, P. J. Dransfield, X. Du, J. Houze, X. Y. Jiao, T. J. Kohn, S. Lai, A-R. Li, D. Lin, J. Luo, J. C. Medina, J. D. Reagan, V. Pattaropong, M. Schwarz, W. Shen, Y. Su, G. Swaminath, M. Vimolratana, X. Wang, Y. Xiong, L. Yang, M. Yu, J. Zhang, L. Zhu, Patent No. WO 2009/048527A1, 2009. Google Scholar 12R. K. Hill, G. R. Newkome, Tetrahedron 1969, 25, 1249. 10.1016/S0040-4020(01)82698-3 CASPubMedWeb of Science®Google Scholar 13For application of in situ generated aryl(dialkyl)aluminum reagents in NHC-Cu-catalyzed enantioselective allylic substitution reactions, see: F. Gao, Y. Lee, K. Mandai, A. H. Hoveyda, Angew. Chem. 2010, 122, 8548; 10.1002/ange.201005124 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 8370. 10.1002/anie.201005124 CASPubMedWeb of Science®Google Scholar 14F. Gao, K. P. McGrath, Y. Lee, A. H. Hoveyda, J. Am. Chem. Soc. 2010, 132, 14315. 10.1021/ja106829k CASPubMedWeb of Science®Google Scholar 15For data in connection to chiral ligand and Cu salt screening, see the Supporting Information. Google Scholar 16Determination of the precise origin for the difference in aryl vs. Me group transfer requires detailed investigations, but might be attributed to a stronger thienyl–Cu bond (vs. phenyl–Cu), thus allowing for competitive addition of a Me unit. Such a proposal is made under the assumption that formation of the requisite NHC–Cu–aryl and NHC–Cu–Me complexes from Ar(Me2)Al reagents are reversible under the reaction conditions. Google Scholar 17Attempts to effect oxidation of thienyl-substituted 3 a with aqueous NaOCl led to formation of substantial amounts of unidentifiable byproducts. Google Scholar 18D. V. Liskin, E. J. Valente, J. Mol. Struct. 2008, 878, 149. 10.1016/j.molstruc.2007.07.045 CASWeb of Science®Google Scholar Citing Literature Volume125, Issue31July 29, 2013Pages 8314-8317 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX