DNA-Mediated Transfer of Multiple Drug Resistance and Plasma Membrane Glycoprotein Expression
1982; Taylor & Francis; Volume: 2; Issue: 8 Linguagem: Inglês
10.1128/mcb.2.8.881-889.1982
ISSN1098-5549
AutoresPaul G. Debenham, Norbert Kartner, Louis Siminovitch, John R. Riordan, Victor Ling,
Tópico(s)Advanced biosensing and bioanalysis techniques
ResumoColchicine-resistant Chinese hamster ovary (CHO) cell mutants whose resistance results from reduced drug permeability have been isolated previously in our laboratories. This reduced permeability affects a wide range of unrelated drugs, resulting in the mutants displaying a multiple drug resistance phenotype. A 170,000-dalton cell surface glycoprotein (P-glycoprotein) was identified, and its expression appears to correlate with the degree of resistance. In this study we were able to confer the multiple drug resistance phenotype on sensitive mouse L cells by DNA-mediated gene transfer of DNA obtained from the colchicine-resistant mutants. P-glycoprotein was detected in plasma membranes of these DNA transformants by staining with an antiserum raised against membranes of mutant CHO cells. These results are consistent with a causal relationship between P-glycoprotein expression and the multiple drug resistance phenotype.
Referência(s)