Bifunctional Organocatalytic Strategy for Inverse‐Electron‐Demand Diels–Alder Reactions: Highly Efficient In Situ Substrate Generation and Activation to Construct Azaspirocyclic Skeletons
2012; Wiley; Volume: 124; Issue: 9 Linguagem: Inglês
10.1002/ange.201107716
ISSN1521-3757
AutoresXianxing Jiang, Xiaomei Shi, Shoulei Wang, Tao Sun, Yiming Cao, Rui Wang,
Tópico(s)Chemical synthesis and alkaloids
ResumoAngewandte ChemieVolume 124, Issue 9 p. 2126-2129 Zuschrift Bifunctional Organocatalytic Strategy for Inverse-Electron-Demand Diels–Alder Reactions: Highly Efficient In Situ Substrate Generation and Activation to Construct Azaspirocyclic Skeletons† Dr. Xianxing Jiang, Dr. Xianxing Jiang Key Laboratory of Preclinical Study for New Drugs of Gansu Province; Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000 (China)Search for more papers by this authorXiaomei Shi, Xiaomei Shi Key Laboratory of Preclinical Study for New Drugs of Gansu Province; Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000 (China)Search for more papers by this authorShoulei Wang, Shoulei Wang Key Laboratory of Preclinical Study for New Drugs of Gansu Province; Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000 (China)Search for more papers by this authorTao Sun, Tao Sun Key Laboratory of Preclinical Study for New Drugs of Gansu Province; Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000 (China)Search for more papers by this authorDr. Yiming Cao, Dr. Yiming Cao Key Laboratory of Preclinical Study for New Drugs of Gansu Province; Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000 (China)Search for more papers by this authorProf. Dr. Rui Wang, Corresponding Author Prof. Dr. Rui Wang [email protected] Key Laboratory of Preclinical Study for New Drugs of Gansu Province; Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000 (China)Key Laboratory of Preclinical Study for New Drugs of Gansu Province; Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000 (China)Search for more papers by this author Dr. Xianxing Jiang, Dr. Xianxing Jiang Key Laboratory of Preclinical Study for New Drugs of Gansu Province; Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000 (China)Search for more papers by this authorXiaomei Shi, Xiaomei Shi Key Laboratory of Preclinical Study for New Drugs of Gansu Province; Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000 (China)Search for more papers by this authorShoulei Wang, Shoulei Wang Key Laboratory of Preclinical Study for New Drugs of Gansu Province; Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000 (China)Search for more papers by this authorTao Sun, Tao Sun Key Laboratory of Preclinical Study for New Drugs of Gansu Province; Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000 (China)Search for more papers by this authorDr. Yiming Cao, Dr. Yiming Cao Key Laboratory of Preclinical Study for New Drugs of Gansu Province; Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000 (China)Search for more papers by this authorProf. Dr. Rui Wang, Corresponding Author Prof. Dr. Rui Wang [email protected] Key Laboratory of Preclinical Study for New Drugs of Gansu Province; Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000 (China)Key Laboratory of Preclinical Study for New Drugs of Gansu Province; Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000 (China)Search for more papers by this author First published: 23 January 2012 https://doi.org/10.1002/ange.201107716Citations: 40 † We are grateful for the grants from the National Natural Science Foundation of China (nos. 20932003 and 90813012) and the Key National S&T Program "Major New Drug Development" of the Ministry of Science and Technology of China (2012ZX09504-001-003). Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Präparativ wertvoll: Bei der ersten hoch enantioselektiven organokatalytischen Variante der Titelreaktion wird das Substrat in situ gebildet und aktiviert (siehe Schema). Die Reaktion ermöglicht einen effizienten enantioselektiven Zugang zu funktionalisierten azaspirocyclischen Gerüsten. Die In-situ-Bildung des Enolats bietet einen neuen Weg für die Verwendung dieses wichtigen Nucleophils in der organischen Synthese. Supporting Information Detailed facts of importance to specialist readers are published as "Supporting Information". Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Filename Description ange_201107716_sm_miscellaneous_information.pdf2.6 MB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1For selected recent reviews, see: Google Scholar 1aS. Reymond, J. Cossy, Chem. Rev. 2008, 108, 5359; 10.1021/cr078346g CASPubMedWeb of Science®Google Scholar 1bK. Ishihara, M. Fushimi, M. Akakura, Acc. Chem. Res. 2007, 40, 1049; 10.1021/ar700083a CASPubMedWeb of Science®Google Scholar 1cE. J. Corey, Angew. Chem. 2002, 114, 1724; 10.1002/1521-3757(20020517)114:10 3.0.CO;2-Q Google ScholarAngew. Chem. Int. Ed. 2002, 41, 1650; 10.1002/1521-3773(20020517)41:10 3.0.CO;2-B CASPubMedWeb of Science®Google Scholar 1dY. Hayashi in Cycloaddition Reactions in Organic Synthesis (Eds.: ), Wiley-VCH, Weinheim, 2001, p. 5. 10.1002/3527600256.ch1 Google Scholar 2H. Ishitani, S. Kobayashi, Tetrahedron Lett. 1996, 37, 7357. 10.1016/0040-4039(96)01655-3 CASWeb of Science®Google Scholar 3For selected examples, see: Google Scholar 3aM. Xie, X. Chen, Y. Zhu, B. Gao, L. Lin, X. Liu, X. Feng, Angew. Chem. 2010, 122, 3887; 10.1002/ange.201000590 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 3799; 10.1002/anie.201000590 CASPubMedWeb of Science®Google Scholar 3bP. Li, H. Yamamoto, J. Am. Chem. Soc. 2009, 131, 16628; 10.1021/ja908127f CASPubMedWeb of Science®Google Scholar 3cJ. Esquivias, R. G. Arrayas, J. C. Carretero, J. Am. Chem. Soc. 2007, 129, 1480; 10.1021/ja0658766 CASPubMedWeb of Science®Google Scholar 3dR. C. Clark, S. S. Pfeiffer, D. L. Boger, J. Am. Chem. Soc. 2006, 128, 2587. 10.1021/ja0571646 CASPubMedWeb of Science®Google Scholar 4 4aM. He, J. R. Struble, J. W. Bode, J. Am. Chem. Soc. 2006, 128, 8418; 10.1021/ja062707c CASPubMedWeb of Science®Google Scholar 4bT. Akiyama, H. Morita, K. Fuchibe, J. Am. Chem. Soc. 2006, 128, 13070. 10.1021/ja064676r CASPubMedWeb of Science®Google Scholar 5 5aD. A. Nicewicz, D. W. C. MacMillan, Science 2008, 322, 77; 10.1126/science.1161976 CASPubMedWeb of Science®Google Scholar 5bK. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 4243. 10.1021/ja000092s CASWeb of Science®Google Scholar 6K. Juhl, K. A. Jøgensen, Angew. Chem. 2003, 115, 1536; 10.1002/ange.200250652 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 1498. 10.1002/anie.200250652 CASPubMedWeb of Science®Google Scholar 7For examples of enamine activation for the IEDDAR, see: Google Scholar 7aJ. L. Li, T. R. Kang, S. L. Zhou, R. Li, L. Wu, Y. C. Chen, Angew. Chem. 2010, 122, 6562; 10.1002/ange.201002912 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 6418; 10.1002/anie.201002912 CASPubMedWeb of Science®Google Scholar 7bB. Han, Z. Q. He, J. L. Li, R. Li, K. Jiang, T. Y. Liu, Y. C. Chen, Angew. Chem. 2009, 121, 5582; 10.1002/ange.200902216 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 5474; 10.1002/anie.200902216 CASPubMedWeb of Science®Google Scholar 7cB. Han, J. L. Li, C. Ma, S. J. Zhang, Y. C. Chen, Angew. Chem. 2008, 120, 10119; 10.1002/ange.200804183 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 9971; 10.1002/anie.200804183 CASPubMedWeb of Science®Google Scholar 7dH. Xie, L. Zu, H. R. Oueis, H. Li, J. Wang, W. Wang, Org. Lett. 2008, 10, 1923; 10.1021/ol800417q CASPubMedWeb of Science®Google Scholar 7eS. Samanta, J. Krause, T. Mandal, C. G. Zhao, Org. Lett. 2007, 9, 2745. 10.1021/ol071097y CASPubMedWeb of Science®Google Scholar 8For reviews, see: Google Scholar 8aA. G. Doyle, E. N. Jacobsen, Chem. Rev. 2007, 107, 5713; 10.1021/cr068373r CASPubMedWeb of Science®Google Scholar 8bS. J. Connon, Chem. Eur. J. 2006, 12, 5418; 10.1002/chem.200501076 CASPubMedWeb of Science®Google Scholar 8cM. S. Taylor, E. N. Jacobsen, Angew. Chem. 2006, 118, 1550; 10.1002/ange.200503132 PubMedWeb of Science®Google ScholarAngew. Chem. Int. Ed. 2006, 45, 1520; 10.1002/anie.200503132 CASPubMedWeb of Science®Google Scholar 8dY. Takemoto, Org. Biomol. Chem. 2005, 3, 4299; For selected examples, see: 10.1039/b511216h CASPubMedWeb of Science®Google Scholar 8eK. L. Tan, E. N. Jacobsen, Angew. Chem. 2007, 119, 1337; 10.1002/ange.200603354 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 1315; 10.1002/anie.200603354 CASPubMedWeb of Science®Google Scholar 8fS.-C. Pan, J. Zhou, B. List, Angew. Chem. 2007, 119, 618; 10.1002/ange.200603630 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 612; 10.1002/anie.200603630 CASPubMedWeb of Science®Google Scholar 8gY. Yamaoka, H. Miyabe, Y. Takemoto, J. Am. Chem. Soc. 2007, 129, 6686; 10.1021/ja071470x CASPubMedWeb of Science®Google Scholar 8hL.-S. Zu, J. Wang, H. Li, H.-X. Xie, W. Jiang, W. Wang, J. Am. Chem. Soc. 2007, 129, 1036; 10.1021/ja067781+ CASPubMedWeb of Science®Google Scholar 8iS. Wei, D. A. Yalalov, S. B. Tsogoeva, S. Schmatz, Catal. Today 2007, 121, 151; 10.1016/j.cattod.2006.11.018 CASWeb of Science®Google Scholar 8jS. B. Tsogoeva, S. Wei, Chem. Commun. 2006, 1451; 10.1039/b517937h CASPubMedWeb of Science®Google Scholar 8kD. A. Yalalov, S. B. Tsogoeva, S. Schmatz, Adv. Synth. Catal. 2006, 348, 826; 10.1002/adsc.200505443 CASWeb of Science®Google Scholar 8lR. P. Herrera, V. Sgarzani, L. Bernardi, A. Ricci, Angew. Chem. 2005, 117, 6734; 10.1002/ange.200500227 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 6576; 10.1002/anie.200500227 CASPubMedWeb of Science®Google Scholar 8mS. H. McCooey, S. J. Connon, Angew. Chem. 2005, 117, 6525; 10.1002/ange.200501721 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 6367. 10.1002/anie.200501721 CASPubMedWeb of Science®Google Scholar 9Z. Xu, L. Liu, K. Wheeler, H. Wang, Angew. Chem. 2011, 123, 3546; 10.1002/ange.201100160 Web of Science®Google ScholarAngew. Chem. Int. Ed. 2011, 50, 3484. 10.1002/anie.201100160 CASPubMedWeb of Science®Google Scholar 10For reviews on stereocontrolled synthesis of spirocycles, see: Google Scholar 10aM. Sannigrahi, Tetrahedron 1999, 55, 9007; 10.1016/S0040-4020(99)00482-2 CASWeb of Science®Google Scholar 10bR. Pradhan, M. Patra, A. K. Behera, B. K. Mishra, R. K. Behera, Tetrahedron 2006, 62, 779; 10.1016/j.tet.2005.09.039 CASWeb of Science®Google Scholar 10cM. E. Sinibaldi, I. Canet, Eur. J. Org. Chem. 2008, 4391; 10.1002/ejoc.200800371 CASWeb of Science®Google Scholar 10dS. Kotha, A. C. Deb, K. Lahiri, E. Manivannan, Synthesis 2009, 165. 10.1055/s-0028-1083300 CASWeb of Science®Google Scholar 11For examples, see: Google Scholar 11aK. A. Miller, S. Tsukamoto, R. M. Williams, Nat. Chem. 2009, 1, 63; 10.1038/nchem.110 CASPubMedWeb of Science®Google Scholar 11bX. Hong, S. France, J. M. Mejĺa-Oneto, A. Padwa, Org. Lett. 2006, 8, 5141; 10.1021/ol062029z CASPubMedWeb of Science®Google Scholar 11cD. G. Hilmey, L. A. Paquette, Org. Lett. 2005, 7, 2067; 10.1021/ol050669g CASPubMedWeb of Science®Google Scholar 11dT. Fehr, J. Kallen, L. Oberer, J. J. Sanglier, W. Schilling, J. Antibiot. 1999, 52, 474. 10.7164/antibiotics.52.474 CASPubMedWeb of Science®Google Scholar 12For examples, see: Google Scholar 12aJ. Xie, W. Chen, R. Li, M. Zeng, W. Du, L. Yue, Y. C. Chen, Y. Wu, J. Zhu, J. G. Deng, Angew. Chem. 2007, 119, 393; 10.1002/ange.200603612 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 389; 10.1002/anie.200603612 CASPubMedWeb of Science®Google Scholar 12bN. J. A. Martin, B. List, J. Am. Chem. Soc. 2006, 128, 13368. 10.1021/ja065708d CASPubMedWeb of Science®Google Scholar 13See: Google Scholar 13aY. M. Cao, X. X. Jiang, L. P. Liu, F. F. Shen, F. T. Zhang, R. Wang, Angew. Chem. 2011, 123, 9290; 10.1002/ange.201104216 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 9124; 10.1002/anie.201104216 CASPubMedWeb of Science®Google Scholar 13bX. X. Jiang, Y. M. Cao, Y. Q. Wang, L. P. Liu, F. F. Shen, R. Wang, J. Am. Chem. Soc. 2010, 132, 15328. 10.1021/ja106349m CASPubMedWeb of Science®Google Scholar 14 14aS. J. Zuend, E. N. Jacobsen, J. Am. Chem. Soc. 2007, 129, 15872. 10.1021/ja0735352 CASPubMedWeb of Science®Google Scholar 15X. X. Jiang, Y. F. Zhang, A. S. C. Chan, R. Wang, Org. Lett. 2009, 11, 153. 10.1021/ol8025268 CASPubMedWeb of Science®Google Scholar Citing Literature Volume124, Issue9February 27, 2012Pages 2126-2129 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation
Referência(s)