Artigo Acesso aberto Revisado por pares

A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE. II: Intercomparison of single-column models and a cloud-resolving model

2000; Wiley; Volume: 126; Issue: 564 Linguagem: Inglês

10.1256/smsqj.56404

ISSN

1477-870X

Autores

P BECHTOLD, Jean‐Luc Redelsperger, I BEAU, M BLACKBURN, S BRINKOP, JY GRANDPEIX, A GRANT, D GREGORY, F GUICHARD, C HOFF, E IOANNIDOU,

Tópico(s)

Tropical and Extratropical Cyclones Research

Resumo

Quarterly Journal of the Royal Meteorological SocietyVolume 126, Issue 564 p. 865-888 Article A GCSS model intercomparison for a tropical squall line observed during toga-coare. II: Intercomparison of single-column models and a cloud-resolving model P. Bechtold, Corresponding Author P. Bechtold [email protected] Observatoire Midi-Pyrénées, FranceLaboratoire d'Aérologie, UMR WS/CNRS 5560, Observatoire Midi-Pyrénées, 14 av Belin, 31400, Toulouse, FranceSearch for more papers by this authorJ.-L. Redelsperger, J.-L. Redelsperger Centre National de Recherche Météomlogiques, FranceSearch for more papers by this authorI. Beau, I. Beau Centre National de Recherche Météomlogiques, FranceSearch for more papers by this authorM. Blackburn, M. Blackburn University of Reading, UKSearch for more papers by this authorS. Brinkop, S. Brinkop Deutsche Zentrum für Luft- und Raumfahrt, GermanySearch for more papers by this authorJ.-Y. Grandper, J.-Y. Grandper Laboratoire de Météomlogie Dymmique, FranceSearch for more papers by this authorA. Grant, A. Grant Hadley Centre for Climate Prediction and Research, UKSearch for more papers by this authorD. Gregory, D. Gregory European Centre for Medium-Range Weather Forecasts, UKSearch for more papers by this authorF. Guichard, F. Guichard Centre National de Recherche Météomlogiques, FranceSearch for more papers by this authorC. How, C. How Centre National de Recherche Météomlogiques, FranceSearch for more papers by this authorE. Ioannidou, E. Ioannidou University of Reading, UKSearch for more papers by this author P. Bechtold, Corresponding Author P. Bechtold [email protected] Observatoire Midi-Pyrénées, FranceLaboratoire d'Aérologie, UMR WS/CNRS 5560, Observatoire Midi-Pyrénées, 14 av Belin, 31400, Toulouse, FranceSearch for more papers by this authorJ.-L. Redelsperger, J.-L. Redelsperger Centre National de Recherche Météomlogiques, FranceSearch for more papers by this authorI. Beau, I. Beau Centre National de Recherche Météomlogiques, FranceSearch for more papers by this authorM. Blackburn, M. Blackburn University of Reading, UKSearch for more papers by this authorS. Brinkop, S. Brinkop Deutsche Zentrum für Luft- und Raumfahrt, GermanySearch for more papers by this authorJ.-Y. Grandper, J.-Y. Grandper Laboratoire de Météomlogie Dymmique, FranceSearch for more papers by this authorA. Grant, A. Grant Hadley Centre for Climate Prediction and Research, UKSearch for more papers by this authorD. Gregory, D. Gregory European Centre for Medium-Range Weather Forecasts, UKSearch for more papers by this authorF. Guichard, F. Guichard Centre National de Recherche Météomlogiques, FranceSearch for more papers by this authorC. How, C. How Centre National de Recherche Météomlogiques, FranceSearch for more papers by this authorE. Ioannidou, E. Ioannidou University of Reading, UKSearch for more papers by this author First published: April 2000 Part A https://doi.org/10.1002/qj.49712656405Citations: 55AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract This paper presents single-column model (SCM) simulations of a tropical squall-line case observed during the Coupled Ocean-Atmosphere Response Experiment of the Tropical Ocean/Global Atmosphere Programme. This case-study was part of an international model intercomparison project organized by Working Group 4 'Precipitating Convective Cloud Systems' of the GEWEX (Global Energy and Water-cycle Experiment) Cloud System Study. Eight SCM groups using different deep-convection parametrizations participated in this project. The SCMs were forced by temperature and moisture tendencies that had been computed from a reference cloud-resolving model (CRM) simulation using open boundary conditions. The comparison of the SCM results with the reference CRM simulation provided insight into the ability of current convection and cloud schemes to represent organized convection. The CRM results enabled a detailed evaluation of the SCMs in terms of the thermodynamic structure and the convective mass flux of the system, the latter being closely related to the surface convective precipitation. It is shown that the SCMs could reproduce reasonably well the time evolution of the surface convective and stratiform precipitation, the convective mass flux, and the thermodynamic structure of the squall-line system. The thermodynamic structure simulated by the SCMs depended on how the models partitioned the precipitation between convective and stratiform. However, structural differences persisted in the thermodynamic profiles simulated by the SCMs and the CRM. These differences could be attributed to the fact that the total mass flux used to compute the SCM forcing differed from the convective mass flux. The SCMs could not adequately represent these organized mesoscale circulations and the microphysicallradiative forcing associated with the stratiform region. This issue is generally known as the 'scale-interaction' problem that can only be properly addressed in fully three-dimensional simulations. Sensitivity simulations run by several groups showed that the time evolution of the surface convective precipitation was considerably smoothed when the convective closure was based on convective available potential energy instead of moisture convergence. Finally, additional SCM simulations without using a convection parametrization indicated that the impact of a convection parametrization in forced SCM runs was more visible in the moisture profiles than in the temperature profiles because convective transport was particularly important in the moisture budget. References Alexander, G. D., and Cotton, W. R. 1998 The use of cloud resolving simulations of mesoscale convective systems to build a mesoscale parameterization scheme. J. Atmos. Sci., 55, 2137–2161 Arakawa, A. and Schubert, W. H. 1974 Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. J. Aimos. Sci., 31, 674–701 Bechtold, P. 1997 ' The Meso-NH convection scheme'. Technical Memorandum (available from Meteo FrancdCNRM, av. Coriolis, 31057 Toulouse Cedex, France) Btlair, S., Zhang, D.-L. and Mailhot, J. 1994 Numerical prediction of the 10–11 June 1985 squall line with the Canadian regional finite-element model. Weather Forecasting, 9, 157–172 Betts, A. K. 1997 ' The parameterization of deep convection'. Pp. 255–279 in The physics and parameterization of moisi atmospheric convection, Ed. R. K. Smith, NATO AS1 Series, 505 Betts, A. K. and Miller, M. J. 1986 A new convective adjustment scheme. II: Single column tests using GATE-wave, BOMEX, ATEX, and Arctic Airmass data sets. Q. J. R. Meteorol. Soc., 112, 677–692 Betts, A. K. and Miller, M. J. 1993 ' The Betts-Miller scheme'. Pp. 107–121 in The representation of cumulus convection in numerical models, Eds. K. A. Emanuel and D. J. Raymond, Meteorol. Monographs, 24 Blackadar, A. K. 1979 High-resolution models of the planetary boundary layer. Adv. Environ. Sci. Eng., 1, 50–45 Bougeault, P. 1985 A simple parameterization of the large-scale effects of cumulus convection. Mon. Weather Rev., 113, 2108–2121 Chao, C. W. and Deng, L. 1998 Tropical intraseasonal oscillation, super cloud clusters, and cumulus convection schemes. Part II: 3D aquaplanet simulations. J. Aimos. Sci., 55, 690–709 Cuxart, J., Bougeault, P. and Redelsperger, J.-L. 2000 A turbulence scheme allowing for mesoscale and large-eddy simulations. Q. J. R. Meteorol. Soc., 126, 1–30 Davis, C. A., Stoelinga, M. T. and Kuo, Y-H. 1993 The integrated effect of condensation in numerical simulations of extratropical cyclogenesis. Mon. Weather Rev., 121, 2309–2330. Emanuel, K. A. 1991 A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 2313–2335 Emanuel, K. A. 1997 ' The problem of convective moistening'. Pp. 255–279 in The physics and parameterization of moist atmospheric convection, Ed. R. K. Smith, NATO ASI Series, 505 Fritsch, J. M., Houze, R. A., Adler, R., Bluestein, H., Bosart, L., Brown, J., Carr, F., Davies, C., Johnson, R. H., Junker, N., Kuo, Y.-H., Rutledge, S., Smith, J., Toth, Z., Wilson J. W., Zipser, E. and Zrnic, D. 1998 Quantitative precipitating forecasting: Report of the eighth prospectus development team, US weather research program. Bull. Arne, Meteorol. Soc., 79, 285–299 Gregory, D. and Rowntree, P. R. 1990 A mass-flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. Mon. Wearher Rev., 118, 1483–1506 Gregory, D., Morcrette, J. J., Jakob, C. and Beljaars, A. C. M. 1998 ' Introduction of revised radiation, convection, cloud and vertical diffusion schemes into Cy18r3 of the ECMWF Integrated Forecasting System'. ECMWF Research Department Technical Note (available from ECMWF, Shinfield Park, Reading RG2 9AX, UK) Grell, G. A. 1993 Prognostic evaluation of assumptions used by cumulus parame-terizations. Mon. Weather Rev., 121, 764–787 Guichard, F., Redelsperger, J.-L. and Lafore, J. P. 1997 Thermodynamical impact and internal structure of a tropical convective cloud system. Q. J. R. Meteorol. Soc., 123, 2297–2324 Holtslag, A. A. M. and Boville, B. A. 1993 Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 1825–1842 Inness, P. M. and Gregory, D. 1997 Aspects of the intraseasonal oscillation simulated by the Hadley Centre atmospheric model. Climate Dyn., 13, 441–458 Kain, J. S. and Fritsch, J. M. 1993 ' Convective parameterization for mesoscale models: The Kain-Fritsch scheme'. Pp. 165–170 in The representation of cumulus convection in numerical models, Eds. K. A. Emanuel and D. J. Raymond, Meteorol. Monographs, 24 Louis, J. F. 1979 A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol., 17, 187–202 Mapes, B. E. 1997 ' Equilibrium versus activation control of large-scale variations of tropical deep convection'. Pp. 321–358 in The physics and parameterization of moist atmospheric convection, Ed. R. K. Smith, NATO ASI Series, 505 Moncrieff, M. W., Gregory, D., Krueger, S. K., Redelsperger, J.-L. and Tao, W. K. 1997 GEWEX Cloud System Study (GCSS) working group 4: Precipitating convective cloud systems. Bull. Amer. Meteorol. Soc., 78, 831–845 Morcrette, J.-J. 1989 Impact of changes to the radiation transfer parameterizations plus cloud optical properties in the ECMWF model. Mon. Weather Rev., 118, 847–873 Nordeng, T. E. 1994 ' Extended versions of the convection parameterization scheme at ECMWF and their impact upon the mean climate and transient activity of the model in the tropics'. ECMWF Technical Memorandum 206 (available from ECMWF, Shinfield Park, Reading RG2 9AX, UK) Raymond, D. J. 1997 ' Critical observations of convection—state of the art and a proposal'. Pp. 447–462 in The physics and parameterization of moist atmospheric convection, Ed. R. K. Smith, NATO ASI Series, 505 Redelsperger, J.-L., Brown, P. R. A., Guichard, F., Hoff, C., Kawasima, M., Lang, S., Montmerle, T., Nakamura, K., Saito, K., Seman, C., Tao, W. K. and Donner, L. J. 2000 A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE. I: Cloud-resolving models. Q. J. R. Meteorol. Soc., 126, 823–863 Ritter, B. and Geleyn, J.-F. 1992 A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Weather Rev., 120, 303–325 Roux, F. 1998 The oceanic mesoscale convective system observed with airborne Doppler radars on 9 february 1993 during TOGA-COARE: Structure, evolution and budgets: Q. J. R. Meteorol. Soc., 124, 585–614 Sénési, S., Bougeault, P., Chèze, J.-L., Cosentino, P. and Thepenier, R.-M. 1996 The Vaison-la-Romaine flash flood: Mesoscale analysis and predictability issues. Weather Forecasting, 11, 417–442 Short, A. D., Kucera, P. A., Fenier, B. S., Gerlach, J. C., Rutledge, S. A. and Thiele, O. W. 1997 Shipboard radar rainfall patterns within the TOGA COARE FA. Bull. Amer. Meteorol. Soc., 78, 2817–2836 Slingo, J. M., Blackburn, M., Betts, A. K., Brugge, R., Hodges, K. D., Hoskins, B. J., Miller, M. J., Steenman-Clark, L. and Thuburn, J. 1994 Mean climate and transience in the tropics of the UGAMP GCM: Sensitivity to convective parameterization. Q. J. R. Meteorol. Soc., 120, 881–922 Stephens, G. L., Jakob, C. and Miller, M. 1998 'Atmospheric ice—a major gap in understanding the effects of clouds on climate'. Pp. 1–20 in GEWEX News, 8, Ed. P. F. Twitchell, (available from GEWEX project office) Sun, W.-Y. and Haines, P. 1996 Semi-prognostic tests of a new cumulus parameterization scheme for mesoscale modelling. Tellus, 48A, 272–289 Taylor, J. P., Edwards, J. M., Glew, M. D., Hignett, P. and Slingo, A. 1996 Studies with a flexible new radiation code. II: Comparisons with aircraft short-wave observations. Q. J. R. Meteorol. Soc., 122, 839–861 Tiedtke, M. 1989 A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wearher Rev., 117, 1779–1800 Wang, W. and Seaman, N. L. 1997 A comparison study of convective parameterization schemes in a mesoscale model. Mon. Weather Rev., 125, 252–278 Xu, K.-M. and Arakawa, A. 1992 Semiprognostic tests of the Arakawa-Schubert cumulus parameterization using simulated data. J. Atmos. Sci., 49, 2421–2436 Yano, J.-I., Williams, J. C. and Moncrieff, M. W. 1996 Fractality in simulations of large-scale tropical cloud systems. Mon. Weather Rev., 124, 838–848 Zhang, D.-L. and Fritsch, J. M. 1988 Numerical sensitivity experiments of varying model physics on the structure, evolution and dynamics of two mesoscale convective systems. J. Atmos. Sci., 45, 261–292 Citing Literature Volume126, Issue564April 2000 Part APages 865-888 ReferencesRelatedInformation

Referência(s)