Fundamental questions in optimizing ion‐exchange chromatography of proteins using computer‐aided process design
1996; Wiley; Volume: 52; Issue: 2 Linguagem: Inglês
10.1002/(sici)1097-0290(19961020)52
ISSN1097-0290
AutoresAlois Jungbauer, Oliver Kaltenbrunner,
Tópico(s)Analytical Chemistry and Chromatography
ResumoBiotechnology and BioengineeringVolume 52, Issue 2 p. 223-236 Bioprocess Technologies Fundamental questions in optimizing ion-exchange chromatography of proteins using computer-aided process design Alois Jungbauer, Corresponding Author Alois Jungbauer [email protected] Institute of Applied Microbiology, University of Agriculture, Forestry and Biotechnology, Nussdorferlände 11, A-1190, Vienna, AustriaInstitute of Applied Microbiology, University of Agriculture, Forestry and Biotechnology, Nussdorferlände 11, A-1190, Vienna, Austria. Telephone: 43-1-36-92-924-416; fax 43-1-36-92-924-400 or 200Search for more papers by this authorOliver Kaltenbrunner, Oliver Kaltenbrunner Institute of Applied Microbiology, University of Agriculture, Forestry and Biotechnology, Nussdorferlände 11, A-1190, Vienna, AustriaSearch for more papers by this author Alois Jungbauer, Corresponding Author Alois Jungbauer [email protected] Institute of Applied Microbiology, University of Agriculture, Forestry and Biotechnology, Nussdorferlände 11, A-1190, Vienna, AustriaInstitute of Applied Microbiology, University of Agriculture, Forestry and Biotechnology, Nussdorferlände 11, A-1190, Vienna, Austria. Telephone: 43-1-36-92-924-416; fax 43-1-36-92-924-400 or 200Search for more papers by this authorOliver Kaltenbrunner, Oliver Kaltenbrunner Institute of Applied Microbiology, University of Agriculture, Forestry and Biotechnology, Nussdorferlände 11, A-1190, Vienna, AustriaSearch for more papers by this author First published: 20 October 1996 https://doi.org/10.1002/(SICI)1097-0290(19961020)52:2 3.0.CO;2-SCitations: 5AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The major objectives for preparative protein chromatography are maximal loading and increased flow rate while maintaining defined resolution. Conventionally a series of chromatographic experiments are performed and the optimal conditions are selected according to the separation criteria. Computer-aided process design uses the same strategy, except a group of related experiments are generated by computer simulation. The access to concrete separation parameters for valid simulation necessitates chromatographic experiments. Optimal conditions are determined in the same manner as conducted in the conventional strategy. Beside other parameters, the distribution coefficient (K) determines the performance of a chromatographic purification under overloading conditions. In ion-exchange chromatography the distribution coefficient is strongly influenced by the protein concentration (C) and the salt concentration (I). A strategy to derive the distribution coefficient from chromatographic experiments, such as isocratic runs (pulse response), linear gradients, and frontal analysis, is described and compared to previously published strategies. In ion-exchange chromatography, the number of plates and transfer units change with the salt concentration. The distribution coefficient for salt also changes under various conditions including salt and protein concentration. The number of plates and transfer units also vary with the flow rate. Furthermore criteria such as the multicomponent situation require a more complex mathematical treatment. Several solutions have been validated to circumvent those obstacles. © 1996 John Wiley & Sons, Inc. References Antia, F. D., Horváth, C. 1989. Gradient elution in non-linear preparative liquid chromatography. J. Chromatogr. 484: 1–27. 10.1016/S0021-9673(01)88960-3 PubMedWeb of Science®Google Scholar Arve, B. H., Liapis, A. I. 1988. Modeling and analysis of elution stage of biospecific adsorption in finite bath. Biotechnol Bioeng. 31: 240–249. 10.1002/bit.260310310 CASPubMedWeb of Science®Google Scholar Bellot, J. C., Condoret, J. S. 1991. Liquid chromatography modeling: A review. Process Biochem. 26: 363–376. 10.1016/0032-9592(91)85027-L CASWeb of Science®Google Scholar Berridge, J. C. 1989. Simplex optimization of high performance liquid chromatographic separations. J. Chromatogr. 485: 3–14. 10.1016/S0021-9673(01)89129-9 CASWeb of Science®Google Scholar Busev, S. A., Zverev, S. I., Larionov, O. G., Jakubov, E. S. 1982. Study of adsorption from solutions by column chromatography. J. Chromatogr: 241: 287–294. 10.1016/S0021-9673(00)81754-9 CASWeb of Science®Google Scholar Carta, G., Stringfield, W. B. 1992. Analytical solution for volume overloaded gradient elution chromatography. J. Chromatogr. 605: 151–159. 10.1016/0021-9673(92)85232-I CASWeb of Science®Google Scholar Cowan, G. H., Gosling, I. S., Laws, J. F., Sweetenham, W. O. 1986. Physical and mathematical modeling to aid scale-up of liquid chromatography. J. Chromatogr. 363: 37–56. 10.1016/S0021-9673(00)88990-6 CASWeb of Science®Google Scholar Craig, L. C. 1944. Identification of small amounts of organic compounds by distribution studies. II. Separation by counter-current distribution. J. Biol. Chem. 155: 519–534. CASWeb of Science®Google Scholar DeLisi, C., Hethcote, H. W., Brettler, J. W. 1982. Non-equilibrium model of liquid chromatography II. Explicit solutions and non-ideal conditions. J. Chromatogr. 240: 283–295. 10.1016/S0021-9673(00)99608-0 CASWeb of Science®Google Scholar DeVault, D. 1943. The theory of chromatography. J. Am. Chem. Soc. 65: 532–540. 10.1021/ja01244a011 CASWeb of Science®Google Scholar Felinger, A., Guiochon, G. 1994. Rapid simulation of chromatographic band profiles on personal computer. J. Chromatogr. A 658: 511–515. 10.1016/0021-9673(94)80043-X CASWeb of Science®Google Scholar Freundlich, H. 1907. Über die Adsorption in Lösung. Physikalische Chemie 57: 385–470. CASWeb of Science®Google Scholar Gadam, S., Jayaraman, G., Cramer, S. M. 1993. Characterization of non-linear adsorption properties of dextran-based polyelectrolyte displacers in ion-exchange systems. J. Chromatogr. 630: 37–52. 10.1016/0021-9673(93)80440-J CASWeb of Science®Google Scholar Gallant, S. R., Kundu, A., Cramer, S. M. 1995. Modeling non-linear elution of proteins in ion-exchange chromatography. J. Chromatogr. A 702: 125–142. 10.1016/0021-9673(94)00992-I CASWeb of Science®Google Scholar Glajch, J. L., Snyder, L. R. 1990. Computer-assisted method development for high-performance liquid chromatography. Elsevier, Amsterdam. Google Scholar Golshan-Shirazi, S., Guiochon, G. 1992. Comparison of various kinetic models of non-linear chromatography. J. Chromatogr. 603: 1–11. 10.1016/0021-9673(92)85340-Y CASWeb of Science®Google Scholar Helfferich, F., Klein, G. 1970. Multicomponent chromatography. Marcel Dekker, New York. Google Scholar Hu, Y., Massart, D. L. 1989. Uniform shell designs for optimization in reversed-phase liquid chromatography. J. Chromatogr. 485: 311–323. 10.1016/S0021-9673(01)89146-9 CASWeb of Science®Google Scholar Huang, J., Horváth, C. 1987a. Adsorption isotherms on high-performance liquid chromatographic sorbents. I. Peptides and nucleic acid constituents on octadecyl-silica. J. Chromatogr. 406: 275–284. 10.1016/S0021-9673(00)94035-4 CASPubMedWeb of Science®Google Scholar Huang, J., Horváth, C. 1987b. Adsorption isotherms on high-performance liquid chromatographic sorbents. II. Proteins on cation exchangers with silica support. J. Chromatogr. 406: 285–294. 10.1016/S0021-9673(00)94036-6 CASPubMedWeb of Science®Google Scholar Jennings, L. S., Teo, K. L., Wang, F. Y., Yu, Q. 1995. Optimal protein separation. Computers Chem Eng. 19: 567–573. 10.1016/0098-1354(94)00099-9 CASWeb of Science®Google Scholar Jungbauer, A., Hackl, S., Yamamoto, S. 1994. Calculation of peak profiles in preparative chromatography of biomolecules. J. Chromatogr. A 658: 399–406. 10.1016/0021-9673(94)80030-8 CASWeb of Science®Google Scholar Karol, P. J. 1989. A different perspective on the theoretical plate in equilibrium chromatography. Anal. Chem. 61: 1937–1041. 10.1021/ac00192a033 CASWeb of Science®Google Scholar Katti, A. M., Guiochon, G. A. 1992. Fundamentals on nonlinear chromatography: Prediction of experimental profiles and band separation, p. 1–118. In: J. C. Giddings, E. Grushka, and P. R. Brown (eds.), Advances in chromatography, vol. 31. Maracel Dekker, New York. Web of Science®Google Scholar Kopaciewicz, W., Rounds, M. A. Fausnaugh, J., Regnier, F. E. 1983. Retention model for high performance ion-exchange chromatography. J. Chromatogr. 266: 3–21. 10.1016/S0021-9673(01)90875-1 CASWeb of Science®Google Scholar Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40: 1361–1403. 10.1021/ja02242a004 CASGoogle Scholar Leser, E. W., Asenjo, J. A. 1992. Rational design of purification processes for recombinant proteins. J. Chromatogr. 584: 43–57. 10.1016/0378-4347(92)80008-E CASPubMedWeb of Science®Google Scholar Lettner, H. P., Kaltenbrunner, O., Jungbauer, A. 1995. HETP in process ion-exchange chromatography. J. Chromatogr. Sci. 33: 451–457. 10.1093/chromsci/33.8.451 CASWeb of Science®Google Scholar Lightfoot, E. N., Sanches-Palma, R. J., Edwards, D. O. 1962. Chromatography and allied fixed bed separation processes, pp. 99–181. In: H. M. Schoen (ed.), New chemical Engineering separation technique. Interscience, New York. Google Scholar Lightfoot, E. N., Athalye, A. M., Coffman, J. L., Roper, D. K., Root, T. W. 1995. Nuclear magnetic resonance and the design of chromatographic separations. J. Chromatogr. A 707: 45–55. 10.1016/0021-9673(95)00077-Z CASWeb of Science®Google Scholar Mao, Q. M., Stockman, R., Prince, I. G., Hearn, M. T. W. 1993. Highperformance liquid chromatography of amino acids, peptides and proteins, CXXVI. Modeling of protein adsorption with non-porous and porous particles in a finite bath. J. Chromatogr. 646: 67–80. 10.1016/S0021-9673(99)87008-3 CASPubMedWeb of Science®Google Scholar Morgan, E., Burton, K. W. 1990. Optimization using the super-modified simplex method. Chemometr. Intelligent Lab. Sys. 8: 97–107. 10.1016/0169-7439(90)80127-R Web of Science®Google Scholar Redlich, O., Peterson, D. 1959. A useful adsorption isotherm. J. Phys. Chem. 63: 1024. 10.1021/j150576a611 CASWeb of Science®Google Scholar Rodrigues, A. E., Dias, M. M., Lopes, J. C. B. 1991. Theory of nonlinear chromatography, pp. 25–52. In: C. A. Costa and J. S. Cabral (eds.), Chromatographic and membrane processes in biotechnology. Kluwer Academic, Dordrecht. 10.1007/978-94-011-3470-5_2 Web of Science®Google Scholar Sadana, A. 1992. Inactivation of proteins and other biological macromolecules during chromatographic methodsof bioseparation. Bioseparation 3: 145–165. CASPubMedGoogle Scholar Sievers, W., Müller, G. 1995. Dynamische Simulation der Adsorption an polymeren Adsorbentien. Chem. Ing. Techn. 67: 897–901. 10.1002/cite.330670717 CASWeb of Science®Google Scholar Sips, R. 1948. On the structure of a catalyst surface. J. Chem. Phys. 16: 490–495. 10.1063/1.1746922 CASWeb of Science®Google Scholar Smit, J. C., Smit, H. C., DeJaeger, E. M. 1980a. Computer implementation of simulation models for non-linear, non-ideal chromatography, fundamental mathematical considerations. Anal. Chim. Acta 122: 1–26. 10.1016/S0003-2670(01)83863-0 CASGoogle Scholar Smit, J. C., Smit, H. C., DeJaeger, E. M. 1980b. Computer implementation of simulation models for non-linear, non-ideal chromatography, numerical experiments and results. Anal. Chim. Acta 122: 151–169. 10.1016/S0003-2670(01)83876-9 CASGoogle Scholar Velayudhan, A., Horváth, C. 1988. Preparative chromatography of proteins, analysis of ion-exchange formalism. J. Chromatogr. 443: 13–29. 10.1016/S0021-9673(00)94779-4 CASPubMedWeb of Science®Google Scholar Velayudhan, A., Horváth, C. 1994. Adsorption and ion-exchange isotherms in preparative chromatography. J. Chromatogr. A 663: 1–10. 10.1016/0021-9673(94)80490-7 CASPubMedWeb of Science®Google Scholar Weiss, J. 1943. On the theory of chromatography. J. Chem. Soc. 297–303. Google Scholar Whitely, R. D., Brown, J. M., Karajgikar, N. P., Wang, N.-H. L. 1989a. Determination of ion-exchange equilibrium parameters of amino acid and protein systems by an impulse response technique. J. Chromatogr. 483: 263–287. 10.1016/S0021-9673(01)93127-9 CASWeb of Science®Google Scholar Whitley, R. D., Wachter, R., Liu, F., Wang, N.-H. L. 1989b. Ion-exchange equilibria of lysozyme, myoglobin and bovine serum albumin, effective valence and exchanger capacity. J. Chromatogr. 465: 137–156. 10.1016/S0021-9673(01)92653-6 CASPubMedWeb of Science®Google Scholar Whitley, R. D., Berninger, J. A., Rouhana, N., Wang, N.-H. L. 1991. Nonlinear gradient isotherm parameter estimation for proteins with consideration of salt competition and multiple forms. Biotechnol. Prog. 7: 554–553. 10.1021/bp00012a010 CASPubMedWeb of Science®Google Scholar Wicar, S., Mulkerrin, M. G., Bathory, G., Khundkar, L. H., Karger, B. L. 1994. Conformation changes in the reversed phase liquid chromatography of recombinant growth hormone as a function of organic solvent: The molten globule state. Anal. Chem. 66: 3908–3915. 10.1021/ac00094a011 CASPubMedWeb of Science®Google Scholar Wilson, J. N. 1940. A theory of chromatography. J. Am. Chem. Soc. 62: 1583–1591. 10.1021/ja01863a071 CASWeb of Science®Google Scholar Yamamoto, S., Nakanishi, K., Matsuno, Kamikubo, T. 1983. Ion-exchange chromatography of proteins. Prediction of elution curves and operating considerations. I. Theoretical considerations. Biotechnol. Bioeng. 25: 1465–1483. 10.1002/bit.260250605 CASPubMedWeb of Science®Google Scholar Yamamoto, S., Nakanishi, K., Matsuno, R. 1988. Ion-exchange chromatography of proteins. Marcel Dekker, New York. 10.1201/b15751 Google Scholar Yamamoto, S., Nomura, M., Sano, Y. 1990. Predicting the performance of gel-filtration chromatography of proteins. J. Chromatogr. 512: 77–87. 10.1016/S0021-9673(01)89474-7 CASWeb of Science®Google Scholar Citing Literature Volume52, Issue220 October 1996Pages 223-236 ReferencesRelatedInformation
Referência(s)