Hydrogen-Bonded Molecular Ribbons as Templates for the Synthesis of Modified Mineral Phases
2000; Wiley; Volume: 112; Issue: 15 Linguagem: Inglês
10.1002/1521-3757(20000804)112
ISSN1521-3757
AutoresSimon Champ, John A. Dickinson, Philip S. Fallon, Brigid R. Heywood, Mark Mascal,
Tópico(s)Chemical Synthesis and Characterization
ResumoAngewandte ChemieVolume 112, Issue 15 p. 2828-2831 Zuschrift Hydrogen-Bonded Molecular Ribbons as Templates for the Synthesis of Modified Mineral Phases Simon Champ, Simon Champ Department of Chemistry and Applied Chemistry University of Salford Salford M5 4WT, UKSearch for more papers by this authorJohn A. Dickinson, John A. Dickinson Department of Chemistry University of Nottingham Nottingham NG7 2RD, UK, Fax: (+44) 115-951-3564Search for more papers by this authorPhilip S. Fallon, Philip S. Fallon Department of Chemistry University of Nottingham Nottingham NG7 2RD, UK, Fax: (+44) 115-951-3564Search for more papers by this authorBrigid R. Heywood Dr., Brigid R. Heywood Dr. [email protected] Department of Chemistry and Applied Chemistry University of Salford Salford M5 4WT, UKSearch for more papers by this authorMark Mascal Dr., Mark Mascal Dr. [email protected] Department of Chemistry University of Nottingham Nottingham NG7 2RD, UK, Fax: (+44) 115-951-3564Search for more papers by this author Simon Champ, Simon Champ Department of Chemistry and Applied Chemistry University of Salford Salford M5 4WT, UKSearch for more papers by this authorJohn A. Dickinson, John A. Dickinson Department of Chemistry University of Nottingham Nottingham NG7 2RD, UK, Fax: (+44) 115-951-3564Search for more papers by this authorPhilip S. Fallon, Philip S. Fallon Department of Chemistry University of Nottingham Nottingham NG7 2RD, UK, Fax: (+44) 115-951-3564Search for more papers by this authorBrigid R. Heywood Dr., Brigid R. Heywood Dr. [email protected] Department of Chemistry and Applied Chemistry University of Salford Salford M5 4WT, UKSearch for more papers by this authorMark Mascal Dr., Mark Mascal Dr. [email protected] Department of Chemistry University of Nottingham Nottingham NG7 2RD, UK, Fax: (+44) 115-951-3564Search for more papers by this author First published: 02 August 2000 https://doi.org/10.1002/1521-3757(20000804)112:15 3.0.CO;2-2Citations: 9 This work was supported by the ICI Strategic Research Fund, the EPSRC, and the Wellcome Trust. AboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Die Kombination zweier wichtiger Organisationsprinzipien, nämlich Anordnung von Tensiden zu Monoschichten und Bildung molekularer Wasserstoffbrücken-Bänder (hier mit den Komponenten Triazintriamin und Triazintrion), führt zu einer Hybridanordnung, die als ein neuartiges Templat Verwendung findet, um die Orientierung und Morphologie bei der Kristallisation von Calciumcarbonat zu kontrollieren (siehe Bild). References 1 This area is replete with insightful reviews and monographs: a) S. Mann, J. Chem. Soc. Dalton Trans. 1997, 3953; Google Scholar S. Mann, S. L. Burkett, S. A. Davis, C. E. Fowler, N. H. Mendelson, S. D. Sims, D. Walsh, N. T. Whilton, Chem. Mater. 1997, 9, 2300; 10.1021/cm970274u CASWeb of Science®Google Scholar S. Weiner, L. Addadi, J. Mater. Chem. 1997, 7, 689; 10.1039/a604512j CASWeb of Science®Google Scholar Biomimetic Materials Chemistry (Ed.: S. Mann), VCH, Weinheim, 1996; Google Scholar S. Mann in Comprehensive Supramolecular Chemistry, Vol. 9 (Eds.: J. L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Vögtle, J.-M. Lehn, J. P. Sauvage, M. W. Hosseini), Pergamon, Oxford, 1996, pp. 529–564; Google Scholar S. Mann, G. A. Ozin, Nature 1996, 382, 313; 10.1038/382313a0 CASWeb of Science®Google Scholar B. C. Bunker, P. C. Rieke, B. J. Tarasevich, A. A. Campbell, G. E. Fryxell, G. L. Graff, L. Song, J. Liu, J. W. Virden, G. L. McVay, Science 1994, 264, 48; 10.1126/science.264.5155.48 CASPubMedWeb of Science®Google Scholar A. H. Heuer, D. J. Fink, V. J. Laraia, J. L. Arias, P. D. Calvert, K. Kendall, G. L. Messing, J. Blackwell, P. C. Rieke, D. H. Thompson, A. P. Wheeler, A. Veis, A. I. Caplan, Science 1992, 255, 1098; 10.1126/science.1546311 CASPubMedWeb of Science®Google Scholar H. A. Lowenstam, S. Weiner, On Biomineralization, Oxford University Press, Oxford, 1989. 10.1093/oso/9780195049770.001.0001 Google Scholar 2(a) J. Aizenberg, J. Hanson, T. F. Koetzle, L. Addadi, J. Am. Chem. Soc. 1997, 119, 881; 10.1021/ja9628821 CASWeb of Science®Google Scholar G. Falini, S. Fermani, M. Gazzano, A. Ripamonti, Chem. Eur. J. 1997, 3, 1807; 10.1002/chem.19970031113 CASPubMedWeb of Science®Google Scholar R. Kniep, S. Busch, Angew. Chem. 1996, 108, 2787; 10.1002/ange.19961082208 Google Scholar Angew. Chem. Int. Ed. Engl. 1996, 35, 2624; 10.1002/anie.199626241 CASWeb of Science®Google Scholar G. Falini, S. Albeck, S. Weiner, L. Addadi, Science 1996, 271, 67. 10.1126/science.271.5245.67 Web of Science®Google Scholar 3 S. A. Davis, S. L. Burkett, N. H. Mendelson, S. Mann, Nature 1997, 385, 420. 10.1038/385420a0 CASWeb of Science®Google Scholar 4(a) G. S. Attard, M. Edgar, C. G. Göltner, Acta Mater. 1998, 46, 751; 10.1016/S1359-6454(97)00256-5 CASWeb of Science®Google Scholar P. V. Braun, P. Osenar, S. I. Stupp, Nature 1996, 380, 325; 10.1038/380325a0 CASWeb of Science®Google Scholar I. A. Aksay, M. Trau, S. Manne, I. Honma, N. Yao, L. Zhou, P. Fenter, P. M. Eisenberger, S. M. Gruner, Science 1996, 273, 892; 10.1126/science.273.5277.892 CASPubMedWeb of Science®Google Scholar P. Behrens, Angew. Chem. 1996, 108, 561; 10.1002/ange.19961080507 Google Scholar Angew. Chem. Int. Ed. Engl. 1996, 35, 515. 10.1002/anie.199605151 CASWeb of Science®Google Scholar 5 G. A. Ozin, Acc. Chem. Res. 1997, 30, 17. 10.1021/ar960021r CASWeb of Science®Google Scholar 6(a) K. Schwarz, M. Epple, Chem. Eur. J. 1998, 4, 1898; 10.1002/(SICI)1521-3765(19981002)4:10 3.0.CO;2-U CASWeb of Science®Google Scholar H. Cölfen, M. Antonietti, Langmuir 1998, 14, 582; 10.1021/la970765t CASWeb of Science®Google Scholar R. L. Reis, A. M. Cunha, M. H. Fernandes, R. N. Correia, J. Mater. Sci. Mater. Med. 1997, 8, 897; 10.1023/A:1018514107669 CASPubMedWeb of Science®Google Scholar P. Calvert, P. Rieke, Chem. Mater. 1996, 8, 1715; 10.1021/cm960126o CASWeb of Science®Google Scholar J. Lin, E. Cates, P. Bianconi, J. Am. Chem. Soc. 1994, 116, 4738; 10.1021/ja00090a021 CASWeb of Science®Google Scholar A. Berman, D. J. Ahn, A. Lio, M. Salmeron, A. Reichert, D. Charych, Science 1995, 269, 515. 10.1126/science.269.5223.515 CASPubMedWeb of Science®Google Scholar 7 S. J. Bonafede, M. D. Ward, J. Am. Chem. Soc. 1995, 117, 7853. 10.1021/ja00135a001 CASWeb of Science®Google Scholar 8 I. ul Haq, E. Matijevic, K. Akhtar, Chem. Mater. 1997, 9, 2659, and references therein. 10.1021/cm970230l Web of Science®Google Scholar 9(a) A. L. Litvin, S. Valiyaveettil, D. L. Kaplan, S. Mann, Adv. Mater. 1997, 9, 124; 10.1002/adma.19970090205 CASWeb of Science®Google Scholar J. Lahiri, G. Xu, D. M. Dabbs, N. Yao, I. A. Aksay, J. T. Groves, J. Am. Chem. Soc. 1997, 119, 5449; 10.1021/ja961486f CASWeb of Science®Google Scholar R. Tang, C. Jiang, Z. Tai, J. Chem. Soc. Dalton Trans. 1997, 4037; Google Scholar B. R. Heywood, S. Mann, Adv. Mater. 1994, 6, 9. 10.1002/adma.19940060103 CASWeb of Science®Google Scholar 10(a) J. Aizenberg, A. J. Black, G. M. Whitesides, J. Am. Chem. Soc. 1999, 121, 4500; 10.1021/ja984254k CASWeb of Science®Google Scholar J. Küther, R. Seshadri, W. Tremel, Angew. Chem. 1998, 110, 3196; 10.1002/(SICI)1521-3757(19981102)110:21 3.0.CO;2-E Google Scholar Angew. Chem. Int. Ed. 1998, 37, 3044; 10.1002/(SICI)1521-3773(19981116)37:21 3.0.CO;2-0 CASWeb of Science®Google Scholar J. Küther, R. Seshadri, W. Knoll, W. Tremel, J. Mater. Chem. 1998, 8, 641; 10.1039/a705859d CASWeb of Science®Google Scholar D. B. Wurm, S. T. Brittain, Y.-T. Kim, J. Mater. Sci. Lett. 1996, 15, 1285. 10.1007/BF00240781 CASWeb of Science®Google Scholar 11 B. J. Tarasevich, P. C. Rieke, J. Liu, Chem. Mater. 1996, 8, 292. 10.1021/cm940391e CASWeb of Science®Google Scholar 12 D. Walsh, J. D. Hopwood, S. Mann, Science 1994, 264, 1576. 10.1126/science.264.5165.1576 CASPubMedWeb of Science®Google Scholar 13 B.-D. Chen, J. J. Cilliers, R. J. Davey, J. Garside, E. T. Woodburn, J. Am. Chem. Soc. 1998, 120, 1625. 10.1021/ja973069o CASWeb of Science®Google Scholar 14 P. K. Dutta, M. Jakupca, K. S. N. Reddy, L. Salvati, Nature 1995, 374, 44. 10.1038/374044a0 CASWeb of Science®Google Scholar 15(a) J.-M. Lehn, M. Mascal, A. DeCian, J. Fischer, J. Chem. Soc. Chem. Commun. 1990, 479; Google Scholar J. A. Zerkowski, C. T. Seto, D. A. Wierda, G. M. Whitesides, J. Am. Chem. Soc. 1990, 112, 9025. 10.1021/ja00180a083 CASWeb of Science®Google Scholar 16(a) K. Kurihara, K. Ohto, Y. Honda, T. Kunitake, J. Am. Chem. Soc. 1991, 113, 5077; 10.1021/ja00013a063 CASWeb of Science®Google Scholar R. Ahuja, P.-L. Caruso, D. Möbius, W. Paulus, H. Ringsdorf, G. Wildburg, Angew. Chem. 1993, 105, 1082; 10.1002/ange.19931050714 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 1993, 32, 1033. 10.1002/anie.199310331 Web of Science®Google Scholar 17 W. Zerweck, K. Keller (I. G. Farbenindustrie), US-A 2228161, 1938 Google Scholar [ Chem. Abstr. 1941, 35, P2531]. Google Scholar 18 These were prepared by adaptations of known methods: D. A. Dunnigan, W. J. Close, J. Am. Chem. Soc. 1953, 75, 3615; 10.1021/ja01111a001 CASWeb of Science®Google Scholar W. J. Close, J. Am. Chem. Soc. 1953, 75, 3617. 10.1021/ja01111a002 CASWeb of Science®Google Scholar 19 The mean CH2·CH2 distance in adjacent chains of solid octadecanoic acid is 4.2 å: CSD refcode STARAC05, The Cambridge Structural Database, F. H. Allen, O. Kennard, Chemical Design Automation News 1993, 8, 3. Note that Kunitake et al. propose a distance of 5 å for the inter-ribbon contact.[20] Google Scholar 20 H. Koyano, P. Bissel, K. Yoshihara, K. Ariga, T. Kunitake, Chem. Eur. J. 1997, 3, 1077. 10.1002/chem.19970030715 CASWeb of Science®Google Scholar 21 In the present work, studies of ribbon assembly at the air-water interface and on a range of subphases reflecting the composition of the crystallization media confirm the auto-assembly of a robust monolayer with a structure commensurate with the model presented in Figure 1. Google Scholar 22 The preferred orientation of the inorganic particles was confirmed by an analysis of the crystallographic ultrastructure of immature crystallites harvested 60 min after the induction of template assembly using established techniques for the collection and analysis of crystals which mitigate against any disruption of their alignment relative to the template.[23] In the present case, all crystals produced single-crystal electron diffraction patterns corresponding to the zone of calcite, thereby confirming the morphological assignment. Google Scholar 23 B. R. Heywood, S. Rajam, S. Mann, J. Chem. Soc. Faraday Trans. 1991, 87, 735. 10.1039/ft9918700735 CASWeb of Science®Google Scholar 24 Interestingly, preferential orientation of calcite on the {01.2} face has been reported for other self-assembled systems.[6f, 10a] The collective results suggest that while homologous geometric packing is important, it is a less critical molecular determinant of oriented nucleation than electrostatic or stereochemical directors. This is supported here by the inclusion of different structural motifs (phosphate, amino) in the ribbon and the observed sensitivity of the system to changes in the identity of the chemical functionality presented to the crystallization medium (Table 1). Google Scholar 25 This is consistent the results of earlier studies in which compressed monolayers of alkyl phosphonate or sulfate amphiphiles favored the oriented nucleation of calcite on the (001) face: a) B. R. Heywood, S. Mann, Chem. Mater. 1994, 6, 311; 10.1021/cm00039a011 CASWeb of Science®Google Scholar B. R. Heywood, S. Mann, J. Am. Chem. Soc. 1992, 114, 4681. 10.1021/ja00038a034 CASWeb of Science®Google Scholar 26 The three published single-crystal X-ray studies of vaterite (ICSD refcodes 6082, 7307, 12947) do not come to a consensus with regard to crystal system, unit cell, or space group. The presence of disorder and the further complication of a super-cell mean that the structure cannot be assigned unambiguously. Google Scholar 27 N. Kimizuka, T. Kawasaki, K. Hirata, T. Kunitake, J. Am. Chem. Soc. 1998, 120, 4094. 10.1021/ja974379+ CASWeb of Science®Google Scholar Citing Literature Volume112, Issue15August 4, 2000Pages 2828-2831 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation
Referência(s)