Artigo Revisado por pares

Female preferences and effective population size

1998; Wiley; Volume: 1; Issue: 3 Linguagem: Inglês

10.1017/s1367943098000134

ISSN

1469-1795

Autores

Daniel T. Blumstein,

Tópico(s)

Adolescent Sexual and Reproductive Health

Resumo

Animal ConservationVolume 1, Issue 3 p. 173-177 Female preferences and effective population size Daniel T. Blumstein, Daniel T. Blumstein Department of Systematics and Ecology, University of Kansas, Lawrence, KS 66045, USA School of Biological Science, Macquarie University, Sydney, NSW 2109, Australia. E-mail: [email protected]Search for more papers by this author Daniel T. Blumstein, Daniel T. Blumstein Department of Systematics and Ecology, University of Kansas, Lawrence, KS 66045, USA School of Biological Science, Macquarie University, Sydney, NSW 2109, Australia. E-mail: [email protected]Search for more papers by this author First published: 28 February 2006 https://doi.org/10.1111/j.1469-1795.1998.tb00026.xCitations: 14 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract As effective population size (Ne) decreases, genetic factors may become relatively important to a population's or species' persistence. Conservation biologists should be aware of anything that can potentially cause a sudden reduction in Ne. I used simple models to illustrate how certain types of female mating preferences combined with certain types of male traits may lead to a sudden and substantial decrease in Ne. Specifically, if and when there is a sudden 'downward' shift in the expression of condition-dependent male traits, females using fixed-threshold mate choice criteria might find fewer acceptable males. While mechanisms of female choice remain elusive, a variety of sexually selected traits may be condition dependent. Because the expression of condition-dependent traits is likely to be impacted by natural or human-induced environmental changes, behavioral and conservation biologists should pay special attention to them around the mating season. Armed with knowledge of condition-dependent male traits, it may be possible to minimize the impact on condition-dependent traits while planning translocations or reintroductions. REFERENCES Andersson, M. (1994). Sexual selection. Princeton : Princeton University Press. 10.1515/9780691207278 Google Scholar Bakker, T. C. M. (1993). Positive genetic correlation between female preference and preferred male ornament in sticklebacks. Nature, Lond. 363: 255–257. 10.1038/363255a0 Web of Science®Google Scholar P. Bateson (Ed.) (1983). Mate choice. Cambridge : Cambridge University Press. Google Scholar Berger, J. (1996). Animal behaviour and plundered mammals: is the study of mating systems a scientific luxury or a conservation necessity Oikos 77: 207–216. 10.2307/3546059 Web of Science®Google Scholar Berglund, A. (1993). Risky sex: male pipefishes mate at random in the presence of a predator. Anim. Behav. 46: 169–175. 10.1006/anbe.1993.1172 Web of Science®Google Scholar Boag, P. T. & Grant, P. R. (1981). Intense natural selection in a population of Darwin's finches (Geospizinae) in the Galápagos. Science 214: 82–85. 10.1126/science.214.4516.82 CASPubMedWeb of Science®Google Scholar Brown, L. (1981). Patterns of female choice in mottled sculpins (Cottidae, Teleostei). Anim. Behav. 29: 375–382. 10.1016/S0003-3472(81)80096-6 Web of Science®Google Scholar Brown, L. & Downhower, J. F. (1983). Constraints on female choice in the mottled sculpin. In Social behavior of female vertebrates: 39–54. S. K. Wasser (Ed.). New York : Academic Press. 10.1016/B978-0-12-735950-2.50008-6 Google Scholar Butlin, R. K. (1993). The variability of mating signals and preferences in the brown planthopper, Nilaparvata lugens ( Homoptera : Delphacidae). J. Insect Behav. 6: 125–140. Web of Science®Google Scholar Charlesworth, B. (1994). Evolution in age-structured populations. 2nd edn. Cambridge : Cambridge University Press. 10.1017/CBO9780511525711 Google Scholar Chepko-Sade, B. D., Shields, W. M., Berger, J., Halpin, Z. T., Jones, W. T., Rogers, L. L., Rood, P. P. & Smith, A. T. (1987). The effects of dispersal and social structure on effective population size. In Mammalian dispersal patterns: the effects of social structure on population genetics: 287–321. B. D. Chepko-Sade & Z. T. Halpin (Eds). Chicago : University of Chicago Press. Google Scholar Clutton-Brock, T. H. & Albon, S. D. (1979). The roaring of red deer and the evolution of honest advertisement. Behaviour 69: 145–169. 10.1163/156853979X00449 Web of Science®Google Scholar Endler, J. A. (1983). Natural and sexual selection on color patterns in poeciliid fishes. Environ. Biol. Fishes 9: 173–190. 10.1007/BF00690861 Web of Science®Google Scholar Endler, J. A. & Théry, M. (1996). Interacting effects of lek placement, display behavior, ambient light, and color pattern in three neotropical forest-dwelling birds. Am. Nat. 148: 421–452. 10.1086/285934 Web of Science®Google Scholar Fisher, R. A. (1958). The genetical theory of natural selection. 2nd edn. New York : Dover Publications, Inc. Google Scholar Forsgren, E. (1992). Predation risk affects mate choice in a gobiid fish. Am. Nat. 140: 1041–1049. 10.1086/285455 Web of Science®Google Scholar Frankham, R. (1995a). Effective population size/adult population size ratios in wildlife: a review. Genet. Res. Camb. 66: 95–107. 10.1017/S0016672300034455 Web of Science®Google Scholar Frankham, R. (1995b). Conservation genetics. Annu. Rev. Gen. 29: 205–327. Web of Science®Google Scholar Frankham, R. (1995c). Inbreeding and extinction: a threshold effect. Conserv. Biol. 9: 792–799. 10.1046/j.1523-1739.1995.09040792.x Web of Science®Google Scholar Franklin, I. R. (1980). Evolutionary change in small populations. In Conservation biology: an evolutionary-ecological perspective: 135–149. M. E. Soulé & B. A. Wilcox (Eds). Sunderland , MA : Sinauer. Google Scholar Gilpin, M. E. & Soulé, M. E. (1986). Minimum viable populations: processes of species extinction. In Conservation biology the science of scarcity and diversity: 19–34. M. E. Soulé (Ed.). Sunderland , MA : Sinauer Associates, Inc. Google Scholar Godin, J. J.-G. & Dugatkin, L. A. (1995). Variability and repeatability of female mating preferences in the guppy. Anim. Behav. 49: 1427–1433. 10.1016/0003-3472(95)90063-2 Web of Science®Google Scholar Griffith, B., Scott, J. M., Carpenter, J. W. & Reed, C. (1989). Translocation as a species conservation tool: status and strategy. Science 245: 477–480. 10.1126/science.245.4917.477 CASPubMedWeb of Science®Google Scholar Höglund, J. (1996). Can mating systems affect local extinction risks? Two examples of lek-breeding waders. Oikos 77: 184–188. 10.2307/3546056 Web of Science®Google Scholar Houde, A. E. (1987). Mate choice based upon naturally occurring color-pattern variation in a guppy population. Evolution 41: 1–10. 10.1111/j.1558-5646.1987.tb05766.x PubMedWeb of Science®Google Scholar Houde, A. E. & Endler, J. A. (1990). Correlated evolution of female mating preferences and male color patterns in the guppy Poecilia reticulata. Science 248: 1405–1408. 10.1126/science.248.4961.1405 CASPubMedWeb of Science®Google Scholar Janetos, A. A. (1980). Strategies of female mate choice: a theoretical analysis. Behav. Ecol. Sociobiol. 7: 107–112. 10.1007/BF00299515 Web of Science®Google Scholar Jennions, M. D., Bacwell, P. R. Y. & Passmore, N. I. (1995). Repeatability of mate choice: the effect of size in the African painted reed frog, Hyperolius mamoratus. Anim. Behav. 49: 181–186. 10.1016/0003-3472(95)80165-0 Web of Science®Google Scholar Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. Proc. Natl. Acad. Sci. USA 78: 3721–3725. 10.1073/pnas.78.6.3721 CASPubMedWeb of Science®Google Scholar Luttbeg, B. (1996). A comparative Bayes tactic for mate assessment and choice. Behav. Ecol. 7: 451–460. PubMedGoogle Scholar McLain, D. K., Moulton, M. P. & Redfearn, T. P. (1995). Sexual selection and the risk of extinction of introduced birds on oceanic islands. Oikos 74: 27–34. 10.2307/3545671 Web of Science®Google Scholar Milinski, M. & Bakker, T. C. M. (1990). Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature, Lond. 344: 330–333. 10.1038/344330a0 Web of Science®Google Scholar Møller, A. P. (1989). Viability costs of male tail ornaments in a swallow. Nature, Lond. 339: 132–135. 10.1038/339132a0 Web of Science®Google Scholar Nunney, L. (1993). The influence of mating system and overlapping generations on effective population size. Evolution 47: 1329–1341. 10.1111/j.1558-5646.1993.tb02158.x PubMedWeb of Science®Google Scholar Parker, P. G. & Waite, T. A. (1997). Mating systems, effective population size, and conservation of natural populations. In Behavioral approaches to conservation in the wild: 243–261. J. R. Clemmons & R. Buchholz (Eds). Cambridge : Cambridge University Press. Web of Science®Google Scholar Primack, R. B. (1993). Essentials of conservation biology. Sunderland , MA : Sinauer. Google Scholar Real, L. (1990). Sequential search theory and mate choice I. Models of single-sex discrimination. Am. Nat. 136: 376–404. 10.1086/285103 Web of Science®Google Scholar Reid, M. L. & Stamps, J. A. (1997). Female mate choice tactics in a resource-based mating system: field tests of alternative models. Am. Nat. 150: 98–121. 10.1086/286058 CASPubMedWeb of Science®Google Scholar Ritchie, M. G. (1996). The shape of female mating preferences. Proc. Natl. Acad. Sci. USA. 93: 14628–14631. 10.1073/pnas.93.25.14628 CASPubMedWeb of Science®Google Scholar Ryan, M. J. (1985). The túngara frog. Chicago : University of Chicago Press. Google Scholar Ryan, M. J. & Keddy-Hector, A. (1992). Directional patterns of female mate choice and the role of sensory biases. Am. Nat. 139: S4–S35. 10.1086/285303 Web of Science®Google Scholar Ryan, M. J. & Wilczynski, W. (1988). Coevolution of sender and receiver: effect on local mate preference in cricket frogs. Science 240: 1786–1788. 10.1126/science.240.4860.1786 CASPubMedWeb of Science®Google Scholar Seehausen, O., Van Alphen, J. M. & Witte, F. (1997). Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277: 1808–1811. 10.1126/science.277.5333.1808 CASWeb of Science®Google Scholar Thornhill, R. (1984). Alternative female choice tactics in the scorpionfly Hylobittacus apicalis (Mecoptera) and their implications. Am. Zool. 24: 367–383. 10.1093/icb/24.2.367 Web of Science®Google Scholar Wagner, W. E.Jr., Murray, A.-M. & Cade, W. H. (1995). Phenotypic variation in the mating preferences of female field crickets, Gryllus integer. Anim. Behav. 49: 1269–1281. 10.1006/anbe.1995.0159 Web of Science®Google Scholar Waite, T. A. & Parker, P. G. (1997). Extra-pair paternity and the effective size of socially monogamous populations. Evolution 51: 620–621. 10.2307/2411135 PubMedWeb of Science®Google Scholar Wittenberger, J. F. (1983). Tactics of mate choice. In Mate choice: 435–447. P. Bateson (Ed.). Cambridge : Cambridge University Press. Google Scholar Wright, S. (1938). Size of population and breeding structure in relation to evolution. Science 87: 430–431. Google Scholar Zuk, M., Johnson, K., Thornhill, R. & Ligon, J. D. (1990). Mechanisms of female choice in red jungle fowl. Evolution 44: 477–485. 10.1111/j.1558-5646.1990.tb05933.x PubMedWeb of Science®Google Scholar Citing Literature Volume1, Issue3August 1998Pages 173-177 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX