Evolution of the mammalian Y chromosome and sex‐determining genes

1998; Wiley; Volume: 281; Issue: 5 Linguagem: Inglês

10.1002/(sici)1097-010x(19980801)281

ISSN

1097-010X

Autores

Jennifer A. Marshall Graves,

Tópico(s)

Genetic and Clinical Aspects of Sex Determination and Chromosomal Abnormalities

Resumo

Journal of Experimental ZoologyVolume 281, Issue 5 p. 472-481 Evolution of the mammalian Y chromosome and sex-determining genes Jennifer A. Marshall Graves, Corresponding Author Jennifer A. Marshall Graves [email protected] School of Genetics and Human Variation, La Trobe University, Melbourne, Victoria 3083, AustraliaSchool of Genetics and Human Variation, La Trobe University, Melbourne, Victoria 3083, Australia===Search for more papers by this author Jennifer A. Marshall Graves, Corresponding Author Jennifer A. Marshall Graves [email protected] School of Genetics and Human Variation, La Trobe University, Melbourne, Victoria 3083, AustraliaSchool of Genetics and Human Variation, La Trobe University, Melbourne, Victoria 3083, Australia===Search for more papers by this author First published: 07 December 1998 https://doi.org/10.1002/(SICI)1097-010X(19980801)281:5 3.0.CO;2-BCitations: 63AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract In mammals, male sex determination, as well as spermatogenesis, is controlled by genes on the Y chromosome. Evolutionary comparisons may be used to detect and test candidate genes for these functions, under the hypothesis that the rapid evolution of the mammalian Y chromosome causes it to contain few genes other than those with a critical function in male reproduction. Comparisons of the gene content of sex chromosomes from the three major groups of extant mammals (placentals, marsupials, and monotremes) show that part of the X chromosome, and a corresponding region of the Y, is shared by all mammals and must be very ancient, but part was added relatively recently. Evolution of the mammalian Y took place in several cycles of addition and attrition, as autosomal regions were added to the pseudoautosomal region of one sex chromosome, recombined onto the other, and degraded on the Y. This explains why most genes and pseudogenes on the Y chromosome have relatives on the X. The gene SRY itself is apparently no exception, being closely related to the highly conserved X-linked gene SOX3. Comparisons of SRY/SOX base sequence and gene location in the three groups of mammals suggest that SRY evolved from SOX3 relatively recently by mutation and loss of all sequences outside the HMG box. It is suggested here that, rather than acting as a transcriptional activator, the SRY gene acts to inhibit its paralogue SOX3, which in turn inhibits an ancient autosomal sex-determining gene SOX9. J. Exp. Zool. 281:472–481, 1998. © 1998 Wiley-Liss, Inc. Literature Cited Bell, D. M., K. K. H. Leung, S. C. Wheatley, L. J. Ng, S. Zhou, K. W. Ling, M. H. Sham, P. Koopman, P. P. L. Tam, and K. S. E. Cheah (1997) SOX9 directly regulates the type-II collagen gene. Nature Genet., 16: 174–178. 10.1038/ng0697-174 CASPubMedWeb of Science®Google Scholar Charlesworth, B. (1991) The evolution of sex chromosomes. Science 251: 1030–1033 10.1126/science.1998119 CASPubMedWeb of Science®Google Scholar Clepet, C., A. J. Schafer, A. H. Sinclair, M. S. Palmer, R. Lovell-Badge, and P. N. Goodfellow (1993) The human SRY transcript. Hum. Mol. Genet., 2: 2007–2012. 10.1093/hmg/2.12.2007 CASPubMedWeb of Science®Google Scholar Cohen, D. R., A. H. Sinclair, and J. D. McGovern (1994) SRY protein enhances transcription of Fos-related antigen 1 promoter constructs. Proc. Natl. Acad. Sci. USA, 91: 4372–4376. 10.1073/pnas.91.10.4372 CASPubMedWeb of Science®Google Scholar Collignon, J., S. Sockanathan, A. Hacker, M. Cohen-Tannoudji, D. Norris, S. Rastan, M. Stevanovic, P. N. Goodfellow, and R. Lovell-Badge (1996) A comparison of the properties of SOX3 with SRY and two related genes, Sox1 and Sox2. Development, 122: 509–520. CASPubMedWeb of Science®Google Scholar Delbridge, M. L., J. L. Harry, R. Toder, and J. A. M. Graves (1997) Only one human candidate spermatogenesis gene is conserved on the marsupial Y chromosome. Nature Genet., 15: 131–136; 10.1038/ng0297-131 CASPubMedWeb of Science®Google Scholar erratum Nature Genet., 15: 411. Google Scholar Dubin, R. A., and H. Ostrer (1994) SRY is a transcriptional activator. Mol. Endocrinol., 8: 1182–1192. 10.1210/me.8.9.1182 CASPubMedWeb of Science®Google Scholar Eicher, E. M., L. L. Washburn, N. J. Schork, B. K. Lee, E. P. Shown, X. Xu, R. D. Dredge, M. J. Pringle, and D. C. Page (1996) Sex-determining genes on mouse autosomes identified by linkage analysis of C57BL/6J-YPOS sex reversal. Nature Genet., 14: 206–209. 10.1038/ng1096-206 CASPubMedWeb of Science®Google Scholar Ferrari, S., V. R. Harley, A. Pontiggia, P. N. Goodfellow, R. Lovell-Badge, and M. E. Bianchi (1992) SRY, like HMG1, recognises sharp angles in DNA. EMBO J., 11: 4497–4506. 10.1002/j.1460-2075.1992.tb05551.x CASPubMedWeb of Science®Google Scholar Foster, J. W., F. E. Brennan, G. K. Hampikian, P. N. Goodfellow, A. H. Sinclair, S. R. Lovell-Badge, L. Selwood, M. B. Renfree, D. W. Cooper, and J. A. M. Graves (1992) Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials. Nature, 359: 531–533. 10.1038/359531a0 CASPubMedWeb of Science®Google Scholar Foster, J. W., and J. A. M. Graves (1994) An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene. Proc. Natl. Acad. Sci. USA, 91: 1927–1931. 10.1073/pnas.91.5.1927 CASPubMedWeb of Science®Google Scholar Foster, J. W., M. Dominguez-Steglich, S. Guioli, C. Kwok, P. A. Weller, M. Stevanovic, J. Weissenbach, S. Mansour, I. D. Young, P. N. Goodfellow, et al. (1994) Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature, 372: 525–530. 10.1038/372525a0 CASPubMedWeb of Science®Google Scholar Fredga, K. (1988) Aberrant chromosomal sex-determining mechanisms in mammals, with special reference to species with XY females. Philos. Trans R. Soc. Lond. Biol., 322: 83–95. 10.1098/rstb.1988.0116 CASPubMedWeb of Science®Google Scholar Graves, J. A. M. (1995) The origin and function of the mammalian Y chromosome and Y-borne genes—an evolving understanding. BioEssays, 17: 311–320. 10.1002/bies.950170407 CASPubMedWeb of Science®Google Scholar Graves, J. A. M. (1998) Interactions between SRY and SOX genes in the control of mammalian sex determination. BioEssays, 20: (in press). CASPubMedWeb of Science®Google Scholar Gubbay, J., J. Collignon, P. Koopman, B. Capel, A. Economou, A. Munsterberg, N. Vivian, P. Goodfellow, and R. Lovell-Badge (1990) A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature, 346: 245–250. 10.1038/346245a0 CASPubMedWeb of Science®Google Scholar Haqq, C. M., C. Y. King, P. K. Donahoe, and M. A. Weiss (1993) SRY recognizes conserved DNA sites in sex-specific promoters. Proc. Natl. Acad. Sci. USA, 90: 1097–1101. 10.1073/pnas.90.3.1097 CASPubMedWeb of Science®Google Scholar Harley, V. R., D. I. Jackson, P. J. Hextall, J. R. Hawkins, G. D. Berkovitz, S. Sockanathan, R. Lovell-Badge, and P. N. Goodfellow (1992) DNA binding activity of recombinant SRY from normal males and XY females. Science, 255: 453–456. 10.1126/science.1734522 CASPubMedWeb of Science®Google Scholar Harry, J. L., P. Koopman, F. E. Brennan, J. A. M. Graves, and M. B. Renfree (1995) Widespread expression of the testis-determining gene SRY in marsupials. Nature Genet., 11: 347–349; erratum, 472. 10.1038/ng1195-347 CASPubMedWeb of Science®Google Scholar Hawkins, J. R. (1993) Mutational analysis of SRY in XY females. Hum. Mutat., 2: 347–350. 10.1002/humu.1380020504 CASPubMedWeb of Science®Google Scholar Jiminez, R., A. Sanchez, M. Burgos, and R. Diaz de la Guardia (1996) Puzzling out the genetics of mammalian sex determination. Trends Genet., 12: 164–166. 10.1016/0168-9525(96)30022-X PubMedWeb of Science®Google Scholar Just, W., W. Rau, W. Vogel, M. Akhverdian, K. Fredga, J. A. M. Graves, and E. Lyapunova (1995) Absence of SRY in species of the vole Ellobius. Nature Genet., 11: 117–118. 10.1038/ng1095-117 CASPubMedWeb of Science®Google Scholar Kent, J., S. C. Wheatley, J. E. Andrews, A. H. Sinclair, and P. Koopman (1996) A male-specific role for SOX9 in vertebrate sex determination. Development, 122: 2813–2822. 10.1242/dev.122.9.2813 CASPubMedWeb of Science®Google Scholar Koopman, P., A. Munsterberg, B. Capel, N. Vivian, and R. Lovell-Badge (1990) Expression of a candidate sex-determining gene during mouse testis differentiation. Nature, 348: 450–452. 10.1038/348450a0 CASPubMedWeb of Science®Google Scholar Koopman, P., J. Gubbay, N. Vivian, P. Goodfellow, and R. Lovell-Badge (1991) Male development of chromosomally female mice transgenic for SRY. Nature, 351: 117–121. 10.1038/351117a0 CASPubMedWeb of Science®Google Scholar Lefebre, V., W. Huang, V. Harley, P. N. Goodfellow, and B. de Crombrugghe (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the Proa1(II) collagen gene. Mol. Cell. Biol., 17: 2336–2346. 10.1128/MCB.17.4.2336 PubMedWeb of Science®Google Scholar Lovell-Badge, R., and A. Hacker (1995) The molecular genetics of SRY and its role in mammalian sex determination. Proc. R. Soc. Lond. B, 350: 205–214. CASPubMedWeb of Science®Google Scholar Luo, X., Y. Ikeda, and K. Parker (1995) The cell-specific nuclear receptor steroidogenic factor 1 plays multiple roles in reproductive function. Proc. R. Soc. Lond. B, 350: 279–283. CASPubMedWeb of Science®Google Scholar McElreavey, K. E., E. Vilain, N. Abbas, I. Herskowitz, and M. Fellous (1993) A regulatory cascade hypothesis for mammalian sex determination: SRY represses a negative regulator of male development. Proc. Natl. Acad. Sci., USA, 90: 3368–3372. 10.1073/pnas.90.8.3368 CASPubMedWeb of Science®Google Scholar Mitchell, M. J., D. R. Woods, S. A. Wilcox, J. A. M. Graves, and C. E. Bishop (1992) The marsupial Y chromosome encodes a homologue of the mouse Y-linked candidate spermatogenesis gene UBE1Y. Nature, 359: 528–531. 10.1038/359528a0 CASPubMedWeb of Science®Google Scholar Morais da Silva, S., A. Hacker, V. Harley, J. Martineau, B. Capel, P. Goodfellow, A. Swain, and R. Lovell-Badge (1996) SOX9 expression during gonadal development implies a conserved role for the gene in Sertoli cell differentiation in mammals and birds. Nature Genet., 14: 62–68. 10.1038/ng0996-62 CASPubMedWeb of Science®Google Scholar Ohno, S. (1967) Sex chromosomes and sex linked genes. Springer Verlag, Berlin. 10.1007/978-3-642-88178-7 Google Scholar Page, D. C., R. Mosher, E. M. Simpson, E. M. C. Fisher, G. Mardon, J. Pollack, B. McGillivray, A. de la Chapelle, and L. G. Brown (1987) The sex-determining region of the human Y chromosome encodes a finger protein. Cell, 51: 1091–1104. 10.1016/0092-8674(87)90595-2 CASPubMedWeb of Science®Google Scholar Pamilo, P., and R. J. W. O'Neill, (1997) Evolution of the Sry genes. Mol. Biol. Evol., 14: 49–55. 10.1093/oxfordjournals.molbev.a025701 CASPubMedWeb of Science®Google Scholar Pask, A., R. Toder, S. A. Wilcox, G. Camerino, and J. A. M. Graves (1997) The candidate sex reversing DAX-1 gene is autosomal in marsupials: implications for the evolution of sex determination in mammals. Genomics, 41: 422–426. 10.1006/geno.1997.4651 CASPubMedWeb of Science®Google Scholar Poulat, F., P. de Santa Barbara, M. Desclozeaux, S. Soullier, B. Moniot, N. Bonneaud, B. Boizet, and P. Berta (1997) The human testis-determining factor SRY binds a nuclear factor containing PDZ protein interaction domains. J. Biol. Chem., 272: 7167–7172. 10.1074/jbc.272.11.7167 CASPubMedWeb of Science®Google Scholar Rimini, R., A. Pontiggia, F. Spada, S. Ferrari, V. Harley, P. N. Goodfellow, and M. E. Bianchi (1995) Interaction of normal and mutant SRY proteins with DNA. Proc. R. Soc. Lond. B, 350: 215–220. CASPubMedWeb of Science®Google Scholar Sinclair, A. H., J. W. Foster, J. A. Spencer, D. C. Page, M. Palmer, P. N. Goodfellow, and J. A. M. Graves (1988) Sequences homologous to ZFY, a candidate human sex-determining gene, are autosomal in marsupials. Nature, 336: 780–783. 10.1038/336780a0 CASPubMedWeb of Science®Google Scholar Sinclair, A. H., P. Berta, M. S. Palmer, J. R. Hawkins, B. L. Griffiths, M. J. Smith, J. W. Foster, A. M. Frischauf, R. Lovell-Badge, and P. N. Goodfellow (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature, 346: 240–244. 10.1038/346240a0 CASPubMedWeb of Science®Google Scholar Sudbeck, P. L., P. A. Schmitz, P. A. Baeuerle, and G. Scherer (1996) Sex reversal by loss of the C-terminal transactivation domain of human SOX9. Nature Genet., 13: 230–232. 10.1038/ng0696-230 PubMedWeb of Science®Google Scholar Swain, A., Zanaria, E., Hacker, A., R. Lovell-Badge, G. and Camerino (1996) Mouse Dax1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nature Genet., 12: 404–409. 10.1038/ng0496-404 CASPubMedWeb of Science®Google Scholar Taketo-Hosotani, T., H. Merchant-Larios, R. B. Thau, and S. S. Koide (1985) Testicular cell differentiation in fetal mouse ovaries following transplantation into adult male mice. J. Exp. Zool., 236: 229–237. 10.1002/jez.1402360213 CASPubMedWeb of Science®Google Scholar Tucker, P. K., and B. L. Lundrigan (1993) Rapid evolution of the sex-determining locus in Old World mice and rats. Nature, 364: 715–717 10.1038/364715a0 CASPubMedWeb of Science®Google Scholar van de Wetering, M., M. Oosterwegel, K. van Norren, and H. Clevers (1993) Sox-4, an SRY-like HMG box protein, is a transcriptional activator in lymphocytes. EMBO J., 12: 3847–3854. 10.1002/j.1460-2075.1993.tb06063.x CASPubMedWeb of Science®Google Scholar Wagner, T., J. Wirth, J. Meyer, B. Zabel, M. Held, J. Zimmer, J. Pasantes, F. D. Bricarelli, J. Keutel, E. Hustert, U. Wolf, N. Tommerup, W. Schempp, and G. Scherer (1994) Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell, 79: 1111–1120. 10.1016/0092-8674(94)90041-8 CASPubMedWeb of Science®Google Scholar Werner, M. H., J. R. Huth, A. M. Gronenborn, and G. M. Clore (1996) Molecular determinants of mammalian sex. Trends Biol. Sci., 21: 302–308. 10.1016/S0968-0004(96)10032-3 CASPubMedWeb of Science®Google Scholar Whitfield, L. S., R. Lovell-Badge, and P. N. Goodfellow (1993) Rapid sequence evolution of the mammalian sex-determining gene SRY. Nature, 364: 713–715. 10.1038/364713a0 CASPubMedWeb of Science®Google Scholar Citing Literature Volume281, Issue5Special Issue:Proceedings From the First International Symposium on Vertebrate Sex Determination1 August 1998Pages 472-481 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX