Synergistic Effect on the Photoactivation of the Methane CH Bond over Ga 3+ ‐Modified ETS‐10
2012; Wiley; Volume: 124; Issue: 19 Linguagem: Inglês
10.1002/ange.201200045
ISSN1521-3757
AutoresLu Li, Yiyu Cai, Guodong Li, Xiaoyue Mu, Kai‐Xue Wang, Jie‐Sheng Chen,
Tópico(s)Inorganic Fluorides and Related Compounds
ResumoAngewandte ChemieVolume 124, Issue 19 p. 4780-4784 Zuschrift Synergistic Effect on the Photoactivation of the Methane CH Bond over Ga3+-Modified ETS-10† Lu Li, Lu Li School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P.R. China) State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (P.R. China)Search for more papers by this authorYi-Yu Cai, Yi-Yu Cai School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P.R. China)Search for more papers by this authorProf. Guo-Dong Li, Prof. Guo-Dong Li State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (P.R. China)Search for more papers by this authorXiao-Yue Mu, Xiao-Yue Mu State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (P.R. China)Search for more papers by this authorProf. Kai-Xue Wang, Prof. Kai-Xue Wang School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P.R. China)Search for more papers by this authorProf. Jie-Sheng Chen, Corresponding Author Prof. Jie-Sheng Chen [email protected] School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P.R. China)School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P.R. China)Search for more papers by this author Lu Li, Lu Li School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P.R. China) State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (P.R. China)Search for more papers by this authorYi-Yu Cai, Yi-Yu Cai School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P.R. China)Search for more papers by this authorProf. Guo-Dong Li, Prof. Guo-Dong Li State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (P.R. China)Search for more papers by this authorXiao-Yue Mu, Xiao-Yue Mu State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (P.R. China)Search for more papers by this authorProf. Kai-Xue Wang, Prof. Kai-Xue Wang School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P.R. China)Search for more papers by this authorProf. Jie-Sheng Chen, Corresponding Author Prof. Jie-Sheng Chen [email protected] School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P.R. China)School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P.R. China)Search for more papers by this author First published: 23 April 2012 https://doi.org/10.1002/ange.201200045Citations: 14 † This work was financially supported by the NSFC and the National Basic Research Program of China (2011CB808703). Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Methanspaltung: Ein Ga3+-modifiziertes mikroporöses Titanosilicat (ETS-10) zeigt eine exzellente Photoaktivität in der Spaltung der C-H-Bindung von Methan bei Raumtemperatur. Die Aktivität wird dem Zusammenspiel aus Gallium-induzierter Polarisation der C-H-Bindung und einem Titanoxid-basierten Photoredoxprozess zugeschrieben. Supporting Information Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Filename Description ange_201200045_sm_miscellaneous_information.pdf363.2 KB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1J. H. Lunsford, Catal. Today 2000, 63, 165–174. 10.1016/S0920-5861(00)00456-9 CASWeb of Science®Google Scholar 2R. A. Periana, O. Mironov, D. Taube, G. Bhalla, C. J. Jones, Science 2003, 301, 814–818. 10.1126/science.1086466 CASPubMedWeb of Science®Google Scholar 3A. Holmen, Catal. Today 2009, 142, 2–8. 10.1016/j.cattod.2009.01.004 CASWeb of Science®Google Scholar 4R. Balasubramanian, S. M. Smith, S. Rawat, L. A. Yatsunyk, T. L. Stemmler, A. C. Rosenzweig, Nature 2010, 465, 115–119. 10.1038/nature08992 CASPubMedWeb of Science®Google Scholar 5H. Yoshida, N. Matsushita, Y. Kato, T. Hattori, J. Phys. Chem. B 2003, 107, 8355–8362. 10.1021/jp034458+ CASWeb of Science®Google Scholar 6L. Li, G. D. Li, C. Yan, X. Y. Mu, X. L. Pan, X. X. Zou, K. X. Wang, J. S. Chen, Angew. Chem. 2011, 123, 8449–8453; 10.1002/ange.201102320 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 8299–8303. 10.1002/anie.201102320 CASPubMedWeb of Science®Google Scholar 7N. Dietl, M. Engeser, H. Schwarz, Angew. Chem. 2009, 121, 4955–4957; 10.1002/ange.200901596 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 4861–4863. 10.1002/anie.200901596 CASPubMedWeb of Science®Google Scholar 8C. Copéret, Chem. Rev. 2010, 110, 656–680. 10.1021/cr900122p CASPubMedWeb of Science®Google Scholar 9L. Yuliati, H. Yoshida, Chem. Soc. Rev. 2008, 37, 1592–1602. 10.1039/b710575b CASPubMedWeb of Science®Google Scholar 10C. E. Taylor, Catal. Today 2003, 84, 9–15. 10.1016/S0920-5861(03)00295-5 CASWeb of Science®Google Scholar 11L. Yuliati, T. Hamajima, T. Hattori, H. Yoshida, J. Phys. Chem. C 2008, 112, 7223–7232. 10.1021/jp712029w CASWeb of Science®Google Scholar 12M. W. Anderson, O. Terasaki, T. Ohsuna, A. Philippou, S. P. Mackay, A. Ferreira, J. Rocha, S. Lidin, Nature 1994, 367, 347–351. 10.1038/367347a0 CASWeb of Science®Google Scholar 13F. X. Llabrés i Xamena, P. Calza, C. Lamberti, C. Prestipino, A. Damin, S. Bordiga, E. Pelizzetti, A. Zecchina, J. Am. Chem. Soc. 2003, 125, 2264–2271. 10.1021/ja027382o CASPubMedWeb of Science®Google Scholar 14P. K. Surolia, R. J. Tayade, R. V. Jasra, Ind. Eng. Chem. Res. 2010, 49, 3961–3966. 10.1021/ie901603k CASWeb of Science®Google Scholar 15A. M. Shough, D. J. Doren, Chem. Mater. 2009, 21, 1232–1241. 10.1021/cm8021177 CASWeb of Science®Google Scholar 16A. I. Serykh, M. D. Amiridis, Surf. Sci. 2009, 603, 2037–2041. 10.1016/j.susc.2009.03.022 CASWeb of Science®Google Scholar 17A. M. Shough, R. F. Lobob, D. J. Doren, Phys. Chem. Chem. Phys. 2007, 9, 5096–5104. 10.1039/b703187d CASPubMedWeb of Science®Google Scholar 18L. Li, X. S. Zhou, G. D. Li, X. L. Pan, J. S. Chen, Angew. Chem. 2009, 121, 6806–6810; 10.1002/ange.200902199 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 6678–6682. 10.1002/anie.200902199 CASPubMedWeb of Science®Google Scholar 19N. C. Jeong, H. Lim, H. Cheong, K. B. Yoon, Angew. Chem. 2011, 123, 8856–8860; 10.1002/ange.201102846 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 8697–8701. 10.1002/anie.201102846 CASPubMedWeb of Science®Google Scholar 20M. J. Nash, R. F. Lobo, D. J. Doren, Appl. Catal. B 2009, 88, 232–239. 10.1016/j.apcatb.2008.10.001 CASWeb of Science®Google Scholar 21Y. K. Krisnandi, R. F. Howe, Appl. Catal. A 2006, 307, 62–69. 10.1016/j.apcata.2006.03.008 CASWeb of Science®Google Scholar 22T. Tabata, M. Kokitsu, O. Okada, Catal. Lett. 1994, 25, 393–400. 10.1007/BF00816319 CASWeb of Science®Google Scholar 23A. M. Ferrari, S. Huber, H. Knözinger, K. M. Neyman, N. Rösch, J. Phys. Chem. B 1998, 102, 4548–4555. 10.1021/jp980100f CASWeb of Science®Google Scholar 24V. B. Kazansky, I. R. Subbotina, A. A. Pronin, R. Schlögl, F. C. Jentoft, J. Phys. Chem. B 2006, 110, 7975–7978. 10.1021/jp055793w CASPubMedWeb of Science®Google Scholar 25M. V. Luzgin, A. A. Gabrienko, V. A. Rogov, A. V. Toktarev, V. N. Parmon, A. G. Stepanov, J. Phys. Chem. C 2010, 114, 21555–21561. 10.1021/jp1078899 CASWeb of Science®Google Scholar 26According to Ref. [13], reaction of O2− with water may follow the steps: O2− + H2O→.HO2. + OH−; .HO2 + e− + H2O→H2O2 + OH−; H2O2 + e−→.OH + OH−; .OH + e−→OH−. Google Scholar Citing Literature Volume124, Issue19May 7, 2012Pages 4780-4784 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation
Referência(s)