Development of the olfactory bulb: Evidence for glia‐neuron interactions in glomerular formation
1999; Wiley; Volume: 415; Issue: 4 Linguagem: Inglês
10.1002/(sici)1096-9861(19991227)415
ISSN1096-9861
AutoresMary S. Bailey, Adam C. Puché, Michael T. Shipley,
Tópico(s)Olfactory and Sensory Function Studies
ResumoJournal of Comparative NeurologyVolume 415, Issue 4 p. 423-448 Research Article Development of the olfactory bulb: Evidence for glia-neuron interactions in glomerular formation Mary S. Bailey, Mary S. Bailey Department of Anatomy and Neurobiology, Program in Neuroscience, The University of Maryland, School of Medicine, Baltimore, Maryland 21201Search for more papers by this authorAdam C. Puche, Adam C. Puche Department of Anatomy and Neurobiology, Program in Neuroscience, The University of Maryland, School of Medicine, Baltimore, Maryland 21201Search for more papers by this authorMichael T. Shipley, Corresponding Author Michael T. Shipley [email protected] Department of Anatomy and Neurobiology, Program in Neuroscience, The University of Maryland, School of Medicine, Baltimore, Maryland 21201Department of Anatomy &; Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Rm. 222, 685 W. Baltimore, Baltimore, MD 21201.Search for more papers by this author Mary S. Bailey, Mary S. Bailey Department of Anatomy and Neurobiology, Program in Neuroscience, The University of Maryland, School of Medicine, Baltimore, Maryland 21201Search for more papers by this authorAdam C. Puche, Adam C. Puche Department of Anatomy and Neurobiology, Program in Neuroscience, The University of Maryland, School of Medicine, Baltimore, Maryland 21201Search for more papers by this authorMichael T. Shipley, Corresponding Author Michael T. Shipley [email protected] Department of Anatomy and Neurobiology, Program in Neuroscience, The University of Maryland, School of Medicine, Baltimore, Maryland 21201Department of Anatomy &; Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Rm. 222, 685 W. Baltimore, Baltimore, MD 21201.Search for more papers by this author First published: 22 November 1999 https://doi.org/10.1002/(SICI)1096-9861(19991227)415:4 3.0.CO;2-GCitations: 110AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Olfactory bulb (OB) glomeruli have long been considered functional units in the processing of odor information. Recently, it has been shown that axons from olfactory receptor neurons (ORNs) expressing the same odorant receptor gene converge onto two or a few topographically fixed glomeruli in the OB. The interactions between ORN axons, mitral/tufted cell dendrites, juxtaglomerular (JG) cells, and glial cells during the development of glomeruli is of great importance in light of this receptor gene glomerular topography in the primary olfactory projection. To explore the development of mammalian olfactory glomeruli, we investigated the relationships among radial glia (RG), astrocytes, ORNs, JG cells, mitral/tufted cell dendrites, and olfactory Schwann cells throughout embryonic and early postnatal development. Our results indicate that glomeruli are formed through an invariant sequence of cellular events: (1) pioneering ORN axons contact the rostral telencephalon at approximately E11–14, which coincides with the onset of morphologic changes in telencephalic RG; (2) at E15–16, RG branch and begin to form two plexuses, one located in the subventricular layer and the other superficial to the presumptive mitral cell layer; (3) at E17–18, ORN axons accumulate in a dense band superficial to the outer radial glia plexus; (4) at E19–20, processes from RG and astrocytes begin to ramify to form glial tufts, or glial glomeruli. Coincident with the formation of these glial glomeruli, ORN axons intermingle with the glial processes and form proto-glomeruli; (5) at E21 to P0, JG cells begin to migrate into position surrounding glomeruli, (6) and at P4, the apical tuft of mitral cells becomes restricted to a single glomerulus. Interestingly, glomerular development also occurs in a distinct rostral to caudal gradient. That is, glomeruli in the rostral OB develop earlier than those in the caudal OB, but the sequence of cellular events at any point in the bulb is invariant. These results demonstrate that glomeruli are formed in a specific spatiotemporal sequence beginning with ORN axon-glia contacts, then JG cell arrival, and finally mitral cell apical dendrite restriction. J. Comp. Neurol. 415:423–448, 1999. © 1999 Wiley-Liss, Inc. LITERATURE CITED Abd-el-Basset EM, Ahmed I, Kalnins VI, Fedoroff S. 1992. Immuno-electron microscopic localization of vimentin and glial fibrillary acidic protein in mouse astrocytes and their precursor cells in culture. Glia 6: 149–153. Medline 10.1002/glia.440060209 CASPubMedWeb of Science®Google Scholar Astic L, Pellier-Monnin V, Godinot F. 1998. Spatio-temporal patters of ensheathing cell differentiation in the rat olfactory system during development. Neuroscience 84: 295–307. Medline 10.1016/S0306-4522(97)00496-X CASPubMedWeb of Science®Google Scholar Autillo-Touati A, Chamak B, Araud D, Vuillet J, Seite R, Prochiantz A. 1988. Region-specific neuro-astroglial interactions: ultrastructural study of the in vitro expression of neuronal polarity. J Neurosci Res 19: 326–342. Medline 10.1002/jnr.490190308 CASPubMedWeb of Science®Google Scholar Bailey MS, Shipley MT. 1993. Astrocyte subtypes in the rat olfactory bulb: morphological heterogeneity and differential laminar distribution. J Comp Neurol 328: 501–526. Medline 10.1002/cne.903280405 CASPubMedWeb of Science®Google Scholar Baird DH, Hatten ME, Mason CA. 1992. Cerebellar target neurons provide a stop signal for afferent neurite extension in vitro. J Neurosci 12: 619–634. Medline CASPubMedWeb of Science®Google Scholar Baker H, Grillo M, Margolis FL. 1989. Biochemical and immunocytochemical characterization of olfactory marker protein in the rodent central nervous system. J Comp Neurol 285: 246–261. Medline 10.1002/cne.902850207 CASPubMedWeb of Science®Google Scholar Bartsch S, Bartsch U, Dorries U, Faissner A, Weller A, Ekblom P, Schachner M. 1992. Expression of tenascin in the developing and adult cerebellar cortex. J Neurosci 12: 736–749. Medline 10.1523/JNEUROSCI.12-03-00736.1992 CASPubMedWeb of Science®Google Scholar Bayer SA. 1983. 3H-Thymidine-radiographic studies of neurogenesis in the rat olfactory bulb. Exp Brain Res 50: 329–340. Medline 10.1007/BF00239197 PubMedWeb of Science®Google Scholar Belluscio L, Gold GH, Nemes A, Axel R. 1998. Mice deficient in G(olf) are anosmic. Neuron 20: 69–81. Medline 10.1016/S0896-6273(00)80435-3 CASPubMedWeb of Science®Google Scholar Brunet LJ, Gold GH, Ngai J. 1996. General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 17: 681–693. Medline 10.1016/S0896-6273(00)80200-7 CASPubMedWeb of Science®Google Scholar Bulfone A, Wang F, Hevner R, Anderson S, Cutforth T, Chen S, Meneses J, Pedersen R, Axel R, Rubenstein JL. 1998. An olfactory sensory map develops in the absence of normal projection neurons or GABAergic interneurons. Neuron 21: 1273–1282. Medline 10.1016/S0896-6273(00)80647-9 CASPubMedWeb of Science®Google Scholar Cooper NGF, Steindler DA. 1986. Lectins demarcate the barrel subfield in the somatosensory cortex of the early postnatal mouse. J Comp Neurol 249: 157–169. Medline 10.1002/cne.902490204 CASPubMedWeb of Science®Google Scholar Crossin KL, Prieto AL, Hoffman S, Jones FS, Friedlander DR. 1990. Expression of adhesion molecules and the establishment of boundaries during embryonic and neural development. Exp Neurol 109: 6–18. Medline 10.1016/S0014-4886(05)80004-4 CASPubMedWeb of Science®Google Scholar Culican SM, Baumrind NL, Yamamoto M, Pearlman AL. 1990. Cortical radial glia: identification in tissue culture and evidence for their transformation to astrocytes. J Neurosci 10: 684–692. Medline 10.1523/JNEUROSCI.10-02-00684.1990 CASPubMedWeb of Science®Google Scholar De Carlos JA, Lopez-Mascaraque L, Valverde F. 1995. The telencephalic vesicles are innervated by olfactory placode-derived cells: a possible mechanism to induce neocortical development. Neuroscience 68: 1167–1178. Medline 10.1016/0306-4522(95)00199-S CASPubMedWeb of Science®Google Scholar Denis-Donini S, Glowinski J, Prochiantz A. 1984. Glial heterogeneity may define the three-dimensional shape of mouse mesencephalic dopaminergic neurons. Nature 307: 641–643. Medline 10.1038/307641a0 CASPubMedWeb of Science®Google Scholar Doucette R. 1989. Development of the nerve fiber layer in the olfactory bulb of mouse embryos. J Comp Neurol 285: 514–527. Medline 10.1002/cne.902850407 PubMedWeb of Science®Google Scholar Doucette R. 1991. PNS-CNS transitional zone of the first cranial nerve. J Comp Neurol 312: 451–466. Medline 10.1002/cne.903120311 CASPubMedWeb of Science®Google Scholar Ekenhoff MF, Rakic P. 1984. Radial organization of the hippocampal dentate gyrus: a Golgi, ultrastructural, and immunocytochemical analysis in the developing rhesus monkey. J Comp Neurol 223: 1–21. Medline Google Scholar Farbman AI, Margolis FL. 1980. Olfactory marker protein during ontogeny: immunohistochemical localization. Dev Biol 74: 205–215. Medline 10.1016/0012-1606(80)90062-7 CASPubMedWeb of Science®Google Scholar Farbman A, Scholz D, Emanuel D, Margolis F. 1980. Maturation of olfactory receptor cell terminals. In: H van der Starre, editor. Olfaction and taste. London: IRL Press. p 147–150. Google Scholar Fok-Seang J, Smith-Thomas LC, Meiners S, Muir E, Du JS, Housden E, Johnson AR, Faissner A, Geller HM, Keynes RJ, Rogers JH, Fawcett JW. 1995. Analysis of astrocyte cell lines with different abilities to promote axon growth. Brain Res 689: 207–223. Medline 10.1016/0006-8993(95)00575-B CASPubMedWeb of Science®Google Scholar Frotscher M. 1997. Dual role for Cajal-Retzius cells and reelin in cortical development. Cell Tissue Res 290: 315–322. Medline 10.1007/s004410050936 CASPubMedWeb of Science®Google Scholar Fueshko SM, Key S, Wray S. 1998. GABA inhibits migration of luteinizing hormone-releasing hormone neurons in embryonic olfactory explants. J Neurosci 18: 2560–2569. Medline 10.1523/JNEUROSCI.18-07-02560.1998 CASPubMedWeb of Science®Google Scholar Gasser UE, Hatten ME. 1990. Neuron-glial interactions of rat hippocampal cells in vitro: glial-guided neuronal migration and neuronal regulation of glial differentiation. J Neurosci 10: 1276–1285. Medline CASPubMedWeb of Science®Google Scholar Gilbert SF. 1997. Developmental biology. 5th ed. Massachusetts: Sinauer Associates. p 113–114. Google Scholar Gong Q, Shipley MT. 1995. Evidence that pioneer olfactory axons regulate telencephalon cell cycle kinetics to induce the formation of the olfactory bulb. Neuron 14: 91–101. Medline 10.1016/0896-6273(95)90243-0 CASPubMedWeb of Science®Google Scholar Gong Q, Bailey MS, Pixley SK, Ennis M, Liu W, Shipley MT. 1994. Localization and regeneration of low affinity nerve growth factor receptor expression in the rat olfactory system during development and regeneration. J Comp Neurol 344: 336–348. Medline 10.1002/cne.903440303 CASPubMedWeb of Science®Google Scholar Gonsalez MDL, Malemud CJ, Silver J. 1993. Role of astroglial extracellular matrix in the formation of rat olfactory bulb glomeruli. Exp Neurol 123: 91–105. Medline Google Scholar Graziadei PPC, Kaplan MS. 1980. Re-growth of olfactory sensory axons into transplanted neural tissue. I. Development of connections with the occipital cortex. Brain Res 201: 39–44. Medline 10.1016/0006-8993(80)90773-8 CASPubMedWeb of Science®Google Scholar Graziadei PPC, Monti-Graziadei GA. 1986. Principles of organization of the vertebrate olfactory glomerulus: a hypothesis. Neuroscience 19: 1025–1035. Medline 10.1016/0306-4522(86)90119-3 PubMedWeb of Science®Google Scholar Gressens P, Richelme C, Kadhim HJ, Gadisseux J-F, Evrard P. 1992. The germinative zone produces the most cortical astrocytes after neuronal migration in the developing mammalian brain. Biol Neonate 61: 4–24. Medline 10.1159/000243526 CASPubMedWeb of Science®Google Scholar Guthrie KM, Gall CM. 1988. Differential expression of mRNAs for the NGF family of neurotrophic factors in the adult rat central olfactory system. J Comp Neurol 313: 95–102. Google Scholar Hatten ME. 1990. Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain. TINS 13: 179–184. Medline 10.1016/0166-2236(90)90044-B PubMedWeb of Science®Google Scholar Hatten ME, Lynch M, Rydel RE, Sanchez J, Joseph-Silverstein J, Moscatelli D, Rifkin DB. 1988. In vitro neurite extension by granule neurons is dependent upon astroglial-derived fibroblast growth factor. Dev Biol 125: 280–289. Medline 10.1016/0012-1606(88)90211-4 CASPubMedWeb of Science®Google Scholar Heredia M, Gascuel J, Ramon-Cueta A, Santacana M, Avila J, Masson C, Valverde F. 1998. Two novel monoclonal antibodies (1.9.E and 4.11.C) against olfactory bulb ensheathing glia. Glia 24: 352–364. Medline 10.1002/(SICI)1098-1136(199811)24:3 3.0.CO;2-Y CASPubMedWeb of Science®Google Scholar Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF, Hanson IM, Prosser J, Jordan T, Hastie ND, van Heyningen V. 1991. Mouse small eye results from mutations in a paired like homeobox continuing gene. Nature 354: 522–525. Medline 10.1038/354522a0 CASPubMedWeb of Science®Google Scholar Hinds JW. 1968a. Autoradiographic study of histogenesis in the mouse olfactory bulb. I. Time of origin of neurons and neuroglia. J Comp Neurol 134: 287–304. Medline 10.1002/cne.901340304 CASPubMedWeb of Science®Google Scholar Hinds JW. 1968b Autoradiographic study of histogenesis in the mouse olfactory bulb. II. Cell proliferation and migration. J Comp Neurol 134: 305–322. Medline 10.1002/cne.901340305 CASPubMedWeb of Science®Google Scholar Hinds JW. 1972. Early neuron differentiation in the mouse olfactory bulb. I. Light microscopy. J Comp Neurol 146: 233–252. Medline 10.1002/cne.901460207 CASPubMedWeb of Science®Google Scholar Hinds JW, Ruffett TL. 1973. Mitral cell development in the mouse olfactory bulb: reorientation of the perikaryon and maturation of the axon initial segment. J Comp Neurol 151: 281–306. Medline 10.1002/cne.901510305 CASPubMedWeb of Science®Google Scholar Levitt P, Rakic P. 1980. Immunoperoxidase localization of glial fibrillary acid protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol 193: 815–840. Medline 10.1002/cne.901930316 CASPubMedWeb of Science®Google Scholar Liesi P, Dahl D, Vaheri A. 1983. Laminin is produced by early rat astrocytes in primary culture. J Cell Biol 96: 920–924. Medline 10.1083/jcb.96.3.920 CASPubMedWeb of Science®Google Scholar Lochter A, Vaughn L, Kaplony A, Prochiantz A, Schachner M, Faissner A. 1991. J1/Tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth. J Cell Biol 113: 1159–1171. Medline 10.1083/jcb.113.5.1159 CASPubMedWeb of Science®Google Scholar Lopez-Mascaraque L, Garcia C, Valverde F, DeCarlos JA. 1998. Central olfactory structures in Pax-6 mutant mice. Ann NY Acad Sci 855: 83–94. Medline 10.1111/j.1749-6632.1998.tb10549.x CASPubMedWeb of Science®Google Scholar Malun D, Brunjes PC. 1996. Development of olfactory glomeruli: temporal and spatial interactions between olfactory receptor axons and mitral cells in opossums and rats. J Comp Neurol 368: 1–16. Medline 10.1002/(SICI)1096-9861(19960422)368:1 3.0.CO;2-7 CASPubMedWeb of Science®Google Scholar Malun D, Oland LA, Tolbert LP. 1994. Uniglomerular projection neurons participate in early development of olfactory glomeruli in the moth Manduca sexta. J Comp Neurol 350: 1–22. Medline 10.1002/cne.903500102 CASPubMedGoogle Scholar Margolis FL. 1972. A brain protein unique to the olfactory bulb. Proc Natl Acad Sci USA 69: 1221–1224. Medline 10.1073/pnas.69.5.1221 CASPubMedWeb of Science®Google Scholar Marin-Padilla M, Amieva MR. 1989. Early neurogenesis of the mouse olfactory nerve: Golgi and electron microscopic studies. J Comp Neurol 288: 339–352. Medline 10.1002/cne.902880211 CASPubMedWeb of Science®Google Scholar Matus A. 1988. Microtubule-associated proteins: their potential role in determining neuronal morphology. Annu Rev Neurosci 11: 29–44. Medline 10.1146/annurev.ne.11.030188.000333 CASPubMedWeb of Science®Google Scholar Meiri KF, Johnson MI, Willard M. 1988. Distribution and phosphorylation of the growth-associated protein GAP-43 in regenerating sympathetic neurons in culture. J Neurosci 8: 2571–2581. Medline CASPubMedWeb of Science®Google Scholar Meisami E, Safari L. 1981. A quantitative study of the effects of early unilateral olfactory deprivation on the number and distribution of mitral and tufted cells and of glomeruli in the rat olfactory bulb. Brain Res 221: 81–107. Medline 10.1016/0006-8993(81)91065-9 CASPubMedWeb of Science®Google Scholar Meyer G, Soria JM, Martinez-Galan JR, Martin-Clemente B, Fairen A. 1998. Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J Comp Neurol 397: 493–518. Medline 10.1002/(SICI)1096-9861(19980810)397:4 3.0.CO;2-X CASPubMedWeb of Science®Google Scholar Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R. 1996. Visualizing an olfactory sensory map. Cell 87: 675–686. Medline 10.1016/S0092-8674(00)81387-2 CASPubMedWeb of Science®Google Scholar Niswander L, Jeffery S, Martin GR, Tickle C. 1994. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371: 609–612. Medline 10.1038/371609a0 CASPubMedWeb of Science®Google Scholar Norgren RB Jr, Brackenbury R. 1993. Cell adhesion molecules and the migration of LHRH neurons during development. Dev Biol 160: 377–387. Medline 10.1006/dbio.1993.1314 CASPubMedWeb of Science®Google Scholar Norgren RB Jr, Ratner N, Brackenbury R. 1992. Development of olfactory nerve glia defined by a monoclonal antibody specific for Schwann cells. Dev Dyn 194: 231–238. Medline 10.1002/aja.1001940308 PubMedWeb of Science®Google Scholar Norris CR, Kalil K. 1991. Guidance of callosal axons by radial glia in the developing cerebral cortex. J Neurosci 11: 3481–3492. Medline 10.1523/JNEUROSCI.11-11-03481.1991 CASPubMedWeb of Science®Google Scholar O'Brien TF, Faissner A, Schachner M, Steindler DA. 1992. Afferent-boundary interactions in the developing neostriatal mosaic. Dev Brain Res 65: 259–267. 10.1016/0165-3806(92)90187-2 CASPubMedWeb of Science®Google Scholar Oland LA, Tolbert LP. 1988. Effects of hydroxyurea parallel the effects of radiation in developing olfactory glomeruli in insects. J Comp Neurol 278: 377–387. Medline 10.1002/cne.902780307 CASPubMedWeb of Science®Google Scholar Oland LA, Tolbert LP, Mossman KL. 1988. Radiation-induced reduction of the glial population during development disrupts the formation of olfactory glomeruli in an insect. J Neurosci 8: 353–367. Medline 10.1523/JNEUROSCI.08-01-00353.1988 CASPubMedWeb of Science®Google Scholar Oland LA, Orr G, Tolbert LP. 1990. Construction of a protoglomerular template by olfactory axons initiates the formation of olfactory glomeruli in the insect brain. J Neurosci 10: 2096–2112. Medline 10.1523/JNEUROSCI.10-07-02096.1990 CASPubMedWeb of Science®Google Scholar Pellier V, Astic L. 1994. Histochemical and immunocytochemical study of the migration of neurons from the rat olfactory placode. Cell Tissue Res 275: 587–598. Medline 10.1007/BF00318827 PubMedWeb of Science®Google Scholar Pixley SK, de Vellis J. 1984. Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Dev Brain Res 15: 201–209. 10.1016/0165-3806(84)90097-X Web of Science®Google Scholar Pomeroy SL, LaMantia A-S, Purves D. 1990. Postnatal construction of neural circuitry in the mouse olfactory bulb. J Neurosci 10: 1952–1966. Medline 10.1523/JNEUROSCI.10-06-01952.1990 CASPubMedWeb of Science®Google Scholar Prochiantz A, Rousselet A, Chamak B. 1990. Adhesion and the in vitro development of axons and dendrites. In: P Coleman, G Higgins, C Phelps, editors. Progress in brain research. New York: Elsevier. p 331–336. Google Scholar Raisman G. 1985. Specialized neuroglial arrangements may explain the capacity of vomeronasal axons to reinnervate central neurons. Neuroscience 14: 237–254. Medline 10.1016/0306-4522(85)90176-9 CASPubMedWeb of Science®Google Scholar Rakic P. 1972. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145: 61–84. Medline 10.1002/cne.901450105 CASPubMedWeb of Science®Google Scholar Ramon-Cueto A, Avila J. 1998. Olfactory ensheathing glia: properties and function. Brain Res Bull 46: 175–177. Medline 10.1016/S0361-9230(97)00463-2 CASPubMedWeb of Science®Google Scholar Ressler KJ, Sullivan SL, Buck LB. 1994. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79: 1245–1255. Medline 10.1016/0092-8674(94)90015-9 CASPubMedWeb of Science®Google Scholar Rizvi TA, Murphy A, Ennis M, Behbehani M, Shipley MT. 1996. Medial preoptic afferents to periaqueductal gray medullo-output neurons: a combined fos and tract-tracing study. J Neurosci 16: 333–344. Medline 10.1523/JNEUROSCI.16-01-00333.1996 CASPubMedWeb of Science®Google Scholar Rudge JS, Silver J. 1990. Inhibition of neurite outgrowth on astroglial scars in vitro. J Neurosci 10: 3594–3603. Medline 10.1523/JNEUROSCI.10-11-03594.1990 CASPubMedWeb of Science®Google Scholar Santacana M, Heredia M, Valverde F. 1992. Transient pattern of exuberant projections of olfactory axons during development in the rat. Brain Res Dev Brain Res 70: 213–222. Medline 10.1016/0165-3806(92)90200-G PubMedWeb of Science®Google Scholar Schmechel DE, Rakic P. 1979. A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol 156: 115–152. Medline 10.1007/BF00300010 CASPubMedWeb of Science®Google Scholar Schwanzel-Fukuda M, Pfaff DW. 1989. Origin of luteinizing hormone-releasing hormone neurons. Nature 338: 161–164. Medline 10.1038/338161a0 CASPubMedWeb of Science®Google Scholar Sheppard AM, Hamilton SK, Pearlman AL. 1991. Changes in the distribution of extracellular matrix components accompany early morphogenetic events of mammalian cortical development. J Neurosci 11: 3928–3942. Medline 10.1523/JNEUROSCI.11-12-03928.1991 CASPubMedWeb of Science®Google Scholar Shipley MT, Luna J, McLean JH. 1989. Processing and analysis of neuroanatomical images. In: L Heimer, L Zaborsky, editors. Neuroanatomical tract tracing methods 2. New York: Plenum. p 331–388. 10.1007/978-1-4757-2055-6_13 Google Scholar Silver J, Ogawa MY. 1983. Postnatally induced formation of the corpus callosum in acallosal mice on glia-coated cellulose bridges. Science 1983: 1067–1069. Google Scholar Silver J, Lorenz SE, Wahlsten D, Coughlin J. 1982. Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways. J Comp Neurol 210: 10–29. Medline 10.1002/cne.902100103 CASPubMedWeb of Science®Google Scholar Silver J, Poston M, Rutishauser U. 1987. Axon pathway boundaries in the developing brain. I. Cellular and molecular determinants that separate the optic and olfactory projections. J Neurosci 7: 2264–2272. Medline CASPubMedWeb of Science®Google Scholar Silver J, Edward MA, Levitt P. 1993. Immunocytochemical demonstration of early appearing astroglial structures that form boundaries and pathways along axon tracts in the fetal brain. J Comp Neurol 328: 415–436. Medline 10.1002/cne.903280308 CASPubMedWeb of Science®Google Scholar Skene JHP. 1989. Axonal growth-associated proteins. Annu Rev Neurosci 12: 127–156. Medline 10.1146/annurev.ne.12.030189.001015 CASPubMedWeb of Science®Google Scholar Snow DM, Lemmon V, Carrino DA, Caplan AI, Silver J. 1990a. Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp Neurol 109: 111–130. Medline 10.1016/S0014-4886(05)80013-5 CASPubMedWeb of Science®Google Scholar Snow DM, Steindler DA, Silver J. 1990b. Molecular and cellular characterization of the glial roof plate of the spinal cord and optic tectum: a possible role for a proteoglycan in the development of an axon barrier. Dev Biol 138: 359–376. Medline 10.1016/0012-1606(90)90203-U CASPubMedWeb of Science®Google Scholar Steindler DA. 1993. Glial boundaries in the developing nervous system. Annu Rev Neurosci 16: 445–470. Medline 10.1146/annurev.ne.16.030193.002305 CASPubMedWeb of Science®Google Scholar Steindler D, Cooper NGF, Faissner A, Schachner M. 1989. Boundaries defined by adhesion molecules during development of the cerebral cortex: the J1/tenascin glycoprotein in the mouse somatosensory cortical barrel field. Dev Biol 131: 243–260. Medline 10.1016/S0012-1606(89)80056-9 CASPubMedWeb of Science®Google Scholar Tolbert LP, Oland LA. 1989. A role for glia in the development of organized neuropilar structures. TINS 12: 70–75. Medline 10.1016/0166-2236(89)90139-2 CASPubMedWeb of Science®Google Scholar Tolbert LP, Oland LA. 1990. Glial cells form boundaries for developing insect olfactory glomeruli. Exp Neurol 109: 19–28. Medline 10.1016/S0014-4886(05)80005-6 CASPubMedWeb of Science®Google Scholar Tolbert LP, Sirianni PA. 1990. Requirement for olfactory axons in the induction and stabilization of olfactory glomeruli in an insect. J Comp Neurol 298: 69–82. Medline 10.1002/cne.902980106 CASPubMedWeb of Science®Google Scholar Tomaselli KJ, Neugebauer KM, Bixby JL, Lilien J, Reichardt LF. 1988. N-Cadherin and integrins: two receptor systems that mediate neuronal process outgrowth on astrocyte surfaces. Neuron 1: 33–43. Medline 10.1016/0896-6273(88)90207-3 CASPubMedWeb of Science®Google Scholar Treloar HB, Nurcombe V, Key B. 1996. Expression of extracellular matrix molecules in the embryonic rat olfactory pathway. J Neurobiol 31: 41–55. Medline 10.1002/(SICI)1097-4695(199609)31:1 3.0.CO;2-F CASPubMedWeb of Science®Google Scholar Valverde F, Santacana M, Heredia M. 1992. Formation of an olfactory glomerulus: morphological aspects of development and organization. Neuroscience 49: 255–275. Medline 10.1016/0306-4522(92)90094-I CASPubMedWeb of Science®Google Scholar Valverde F, Heredia M, Santacana M. 1993. Characterization of neuronal cell varieties migrating from the olfactory epithelium during prenatal development in the rat. Immunocytochemical study using antibodies against olfactory marker protein (OMP) and luteinizing hormone-releasing hormone (LH-RH). Dev Brain Res 71: 209–220. 10.1016/0165-3806(93)90173-8 CASPubMedWeb of Science®Google Scholar Vassar R, Chao SK, Sitcheran R, Nunez JM, Vosshall LB, Axel R. 1994. Topographic organization of sensory projections to the olfactory bulb. Cell 79: 981–991. Medline 10.1016/0092-8674(94)90029-9 CASPubMedWeb of Science®Google Scholar Verhaagen J, Oestreicher AB, Grillo M, Khew-Goodall Y, Gispen WH, Margolis FL. 1990. Neuroplasticity in the olfactory system: differential effects of central and peripheral lesions of the primary olfactory pathway on the expression of B-50/GAP43 and the olfactory marker protein. J Neurosci Res 26: 31–44. Medline 10.1002/jnr.490260105 CASPubMedWeb of Science®Google Scholar Voight T. 1989. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol 289: 74–88. Medline 10.1002/cne.902890106 PubMedWeb of Science®Google Scholar Wang F, Nemes A, Mendelsohn M, Axel R. 1998. Odorant receptors govern the formation of a precise topographic map. Cell 93: 47–60. Medline 10.1016/S0092-8674(00)81145-9 CASPubMedWeb of Science®Google Scholar Whitlock KE, Westerfield M. 1998. A transient population of neurons pioneers the olfactory pathway in the zebrafish. J Neurosci 18: 8919–8927. Medline CASPubMedWeb of Science®Google Scholar Citing Literature Volume415, Issue427 December 1999Pages 423-448 ReferencesRelatedInformation
Referência(s)