Environmental risk assessment scheme for plant protection products
2003; Wiley; Volume: 33; Issue: 1 Linguagem: Inglês
10.1046/j.1365-2338.2003.00621.x
ISSN1365-2338
Tópico(s)Pesticide and Herbicide Environmental Studies
ResumoEPPO BulletinVolume 33, Issue 1 p. 115-129 Environmental risk assessment scheme for plant protection products First published: 11 April 2003 https://doi.org/10.1046/j.1365-2338.2003.00621.xCitations: 4 European and Mediterranean Plant Protection OrganizationPP 3/12(1) Organization Européenne et Méditerranéenne pour la Protection des Plantes Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Anon (2000) Guidance Document on Aquatic Ecotoxicology in the Frame of Directive 91/414/EEC (VI B II.I). 8075/VI/97 rev7. Commission of the European Union, Brussels (BE). Google Scholar Asman WAH (1998) Factors influencing local dry deposition of gases with special reference to ammonia. Atmospheric Environment 32, 415–421. 10.1016/S1352-2310(97)00166-0 CASWeb of Science®Google Scholar Atkinson R, Guicherit R, Hites RA, Palm WU, Seiber JN & De Voogt P (1999) Transformations of pesticides in the atmosphere: a state of the art. Water, Air and Soil Pollution 115, 218–243. 10.1023/A:1005286313693 Web of Science®Google Scholar Bayer A, Mackay D, Matthies M, Wania F & Webster E (2000) Assessing long-range transport potential of persistent organic pollutants. Environmental Science and Technology. 34, 699–703. 10.1021/es990207w Web of Science®Google Scholar BBA (2000a) [Announcement on threshold drift values to be taken into account in testing and authorizing plant protection products.] Bundesanzeiger 100, 9879–9881 (in German). Google Scholar BBA (2000b) [Announcement on the list of use conditions reducing risks for non-target organisms.] Bundesanzeiger 100, 9878 (in German). Google Scholar Bidleman TF (1999) Atmospheric transport and air-surface exchange of pesticides. Water, Air and Soil Pollution 115, 115–166. 10.1023/A:1005249305515 CASWeb of Science®Google Scholar Bird SL, Ray SL, Teske ME, Esterly DM, Perry SG & Gustafson DI (1995) A Proposed Screening Level Assessment Method for Aerial Spray Drift of Pesticides. National Exposure Research Laboratory, Environmental Protection Agency, Athens (US). Google Scholar Bird SL, Perry SG, Ray SL, Teske ME & Scherer PN (1997) An Evaluation of AgDrift 1.0 Model for Use in Aerial Applications. National Exposure Research Laboratory, Environmental Protection Agency, Athens (US). Google Scholar Boermans GMF & Van Pul WAJ (1992) Slam, a Short-term and Local-scale Ammonia Transport Model. Jaarvergadering Vereniging Lucht, Utrecht (NL). Google Scholar Bor G, Van Den Berg F, Smelt JH, Smidt RA, Van De Peppel-Groen AE & Leistra M (1995a) Volatilization of Tri-Allate, Ethoprophos and Parathion measured with Four Methods after Spraying on a Sandy Soil. Report 104. Winand Staring Centre for Integrated Land, Soil and Water Research, Wageningen (NL). Google Scholar Bor G, Van Den Berg F, Smelt JH, Van De Peppel-Groen AE & Leistra M (1995b) Volatilization of EPTC, Tri-Allate and Parathion after Spraying on a Clay Soil. Report 394. Winand Staring Centre for Integrated Land, Soil and Water Research, Wageningen (NL) (in Dutch). Google Scholar Council of Europe (1995) Volatilization and Deposition of Plant Protection Products (eds D Gottschild, J Siebers & HG Nolting). Council of Europe Press, Strasbourg (FR). Google Scholar Cousins IT, Gouin T & Mackay D (2000) Screening Organic Chemicals for Persistence in the Environment and Potential for Long-Range Transport. Environment Canada, Ottawa (CA). Google Scholar De Leeuw FAAM (1993) Assessment of the atmospheric hazards and risks of new chemicals: procedures to estimate ‘hazard potentials’. Chemosphere 27, 1313–1328. 10.1016/0045-6535(93)90226-U CASWeb of Science®Google Scholar De Leeuw F, Van Pul A, Van Den Berg F & Gilbert AJ (2000) The use of atmospheric dispersion models in risk-assessment decision-support systems for pesticides. Environmental Monitoring and Assessment 62, 133–145. 10.1023/A:1006262209031 Web of Science®Google Scholar Doble SJ, Matthews GA, Rutherford I & Southcombe ESE (1985) A system for classifying hydraulic nozzles and other atomisers into categories of spray quality. In Proceedings 1985 British Crop Protection Conference, Weeds, pp. 1125–1133. BCPC, Farnham (GB). Google Scholar Dubus IG, Hollis JM & Brown CD (2000) Pesticides in rainfall in Europe. Environmental Pollution 110, 331–344. 10.1016/S0269-7491(99)00295-X CASPubMedWeb of Science®Google Scholar Gan J, Yates SR, Wang D & Spencer WF (1996) Effect of soil factors on methyl bromide volatilization after soil application. Environmental Science and Technology 30, 1629–1636. 10.1021/es950624i CASWeb of Science®Google Scholar Ganzelmeier H (2000) Drift studies and drift-reducing sprayers – a German approach. ASEA paper 001024, ASEA Meeting 2000-07-09/2. Milwaukee (US). Google Scholar Ganzelmeier H, Rautmann D, Spangenberg R, Sreloke M, Herrmann M, Wenzelburger HJ & Walter HF (1995) Studies on the spray drift of plant protection products. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft, Berlin-Dahlem, no. 305. Blackwell Wissenschaftverlag, Berlin (DE). Google Scholar Gilbert AJ (2000) Local environmental risk assessment for pesticides (LERAP) in the UK. Aspects of Applied Biology no. 57, pp. 83–90. AAB, Wellesbourne (GB). Google Scholar Gilbert AJ & Bell GJ (1988) Evaluation of the drift hazards arising from pesticide spray application. Aspects of Applied Biology no. 17, pp. 363–376. AAB, Wellesbourne (GB). Google Scholar Gouin T, Mackay D, Webster E & Wania F (2000) Screening chemicals for persistence in the environment. Environmental Science and Technology 34, 881–884. 10.1021/es991011z CASWeb of Science®Google Scholar Graedel TE (1978) Chemical Compounds in the Atmosphere. Academic Press, New York (US). Google Scholar Haenel HD & Siebers J (1992) A meteorological model of pesticide volatilization. In International Congress on Agro-Ecosystem Modelling 1992-10-05/09. Braunschweig (DE). Google Scholar Haenel HD, Siebers J & Wittich FP (1998) IMPAQ – an approach to the estimation of pesticide application on downwind air quality. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft, Berlin-Dahlem, no. 357, pp. 411–412. Google Scholar Hashem A & Parkin CSP (1991) A simplified heavy-particle random-walk model for the prediction of drift from agricultural sprays. Atmospheric Environment 25A, 1609–1614. 10.1016/0960-1686(91)90019-4 Web of Science®Google Scholar Hobson PA, Miller PCH, Walklate PJ, Tuck CR & Western NM (1993) Spray drift from hydraulic spray nozzles: the use of a computer simulation model to examine factors influencing drift. Journal of Agricultural Engineering Research 54, 293–305. 10.1006/jaer.1993.1022 Web of Science®Google Scholar Holterman HJ, Van De Zande JC, Porskamp HAJ & Huijsmans JFM (1997) Modelling spray drift from boom sprayers. Computers and Electronics in Agriculture 19, 1–22. 10.1016/S0168-1699(97)00018-5 Web of Science®Google Scholar Huijsmans JFM, Porskamp HAJ & Heijne B (1993) Orchard tunnel sprayers with reduced emission to the environment. In ANPP–BCPC Second International Symposium on Pesticide Application Techniques, Strasbourg (FR). Google Scholar Huijsmans JFM, Porskamp HAJ & Van De Zande JC (1997) Spray Drift (Reduction) in Crop Protection Application Technology. Evaluation of Spray Drift in Orchards, Field Crops and Nursery Tree Crops Spraying. IMAG-DLO Report 97-04. DLO Institute of Agricultural and Environmental Engineering, Wageningen (NL). Google Scholar ISO (2000a) Equipment for Crop Protection – Method for the Field Measurement of Spray Drift. ISO/TC23/SC6/N329. International Standards Organization, Genève (CH). Google Scholar ISO (2000b) Equipment for Crop Protection – Drift Classification Procedures for Sprayers and Nozzles and Classes. ISO/TC23/SC6/N330. International Standards Organization, Genève (CH). Google Scholar Jury WA, Spencer WF & Farmer WJ (1983) Behavior assessment model for trace organics in soil. I. Model description. Journal of Environmental Quality 12, 558–564. 10.2134/jeq1983.00472425001200040025x CASWeb of Science®Google Scholar Jury WA, Spencer WF & Farmer WJ (1984a) Behavior assessment model for trace organics in soil II. Chemical classification and parameter sensitivity. Journal of Environmental Quality 13, 567–572. 10.2134/jeq1984.00472425001300040012x Web of Science®Google Scholar Jury WA, Spencer WF & Farmer WJ (1984b) Behavior assessment model for trace organics in soil. IV. Review of experimental evidence. Journal of Environmental Quality 13, 580–586. 10.2134/jeq1984.00472425001300040014x CASWeb of Science®Google Scholar Kaul P & Gebauer S (1994) [Drift modelling for field sprayers.] Mitteilungen aus der Biologischen Bundesanstalt, no. 301. Braunschweig (DE) (in German). Google Scholar Kaul P, Meyer H & Gebauer S (1995) [Direct drift of plant protection products – aircraft.] Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 47, 36–44 (in German). Google Scholar Kaul P, Gebauer S, Neukampf R & Ganzelmeier H (1996) [Modelling of direct drift of plant protection products – plant protection equipment for flat crops.] Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 48, 21–31 (in German). Google Scholar Kaul P, Moll E, Gebauer S & Neukampf R (2000) [Modelling of direct drift of plant protection products in agriculture by multiple regression.] Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft Berlin-Dahlem, no. 52, pp. 105–106 (in German). Google Scholar Kördel W & Klöppel H (1998) [Exposure of Semi-Natural Ecosystems to Airborne Plant Protection Products.]Fraunhofer Institut für Umweltchemie und Ökotoxikologie, Schmallenberg (DE) (in German). Web of Science®Google Scholar Kördel W, Klöppel H & Müller M (1999) [Development of a multi-tier procedure for assessing the emission of plant protection products into terrestrial ecosystems.]Umweltbundesamt, Berlin (DE) (in German). Google Scholar Leistra M, Van Der Linden AMA, Boesten JJTI, Tiktak A & Van Den Berg F (2000) PEARL Model for Pesticide Behaviour and Emissions in Soil–Plant Systems. Description of Processes. Alterra report 13, RIVM report 711401009. Alterra, Wageningen (NL). Google Scholar Lerche D, Van De Plassche E, Schwegler A & Balk F (2002) Selecting chemical substances for the UN-ECE POP Protocol. Chemosphere 47, 617–630. 10.1016/S0045-6535(02)00028-0 CASPubMedWeb of Science®Google Scholar Loubet B, Milford C, Sutton MA & Cellier P (2001) Investigation of the interaction between sources and sinks of atmospheric ammonia in an upland landscape using a simplified dispersion-exchange model. Journal of Geophysical Research 106, 183–198. 10.1029/2001JD900238 Web of Science®Google Scholar Majewski MS (1999) Micrometeorological methods for measuring the post-application volatilization of pesticides. Water, Air and Soil Pollution 115, 83–113. 10.1023/A:1005297121445 CASWeb of Science®Google Scholar Mensink BJWG & Linders JBHJ (1998) Airborne Pesticide Concentrations near Greenhouses (Acute Exposure and Potential Effects to Humans). Report number 679102040. National Institute of Public Health and the Environment/RIVM, Bilthoven (NL). Google Scholar Miller PCH & Hadfield DJ (1989) A simulation model of the spray drift from hydraulic nozzles. Journal of Agricultural Engineering Research 42, 135–147. 10.1016/0021-8634(89)90046-2 Web of Science®Google Scholar OECD (1992) The Rate of Photochemical Transformation of Gaseous Organic Compounds in Air under Tropospheric Conditions. OECD Environment Monograph no. 61. OECD, Paris (FR). Google Scholar Parkin CS, Gilbert AJ, Southcombe ESE & Marshall CJ (1994) British Crop Protection Council scheme for the classification of pesticide application equipment by hazard. Crop Protection 13, 281–285. 10.1016/0261-2194(94)90016-7 Web of Science®Google Scholar Porskamp HAJ, Michielsen JMGP & Huijsmans JFM (1994a) [Emission-limiting Spray Techniques in Fruit Growing (1992): Research on Deposition and Emission of Plant Protection Products.] IMAG Rapport, pp. 94–19. Instituut voor Milieu- en Agritechniek, Wageningen (NL) (in Dutch). Google Scholar Porskamp HAJ, Michielsen JMGP & Huijsmans JFM (1994b) [Emission-limiting Spray Techniques in Fruit Growing (1993): Research on Deposition and Emission of Plant Protection Products.] IMAG Rapport, pp. 94–23. Instituut voor Milieu- en Agritechniek, Wageningen (NL) (in Dutch). Google Scholar Porskamp HAJ, Michielsen JMGP & Huijsmans JFM (1994c) [Influence of a Windbreak on Emission from a Fruit Spray.] IMAG Rapport, pp. 94–29. Instituut voor Milieu- en Agritechniek, Wageningen (NL) (in Dutch). Google Scholar Porskamp HAJ, Michielsen JMGP, Huijsmans JFM & Van Der Zande JC (1995) [Emission-limiting Spray Techniques for Field Crops: Influence of Air Assistance, Nozzle Choice and Crop-Free Zone.] IMAG Rapport, pp. 95–19. Instituut voor Milieu- en Agritechniek, Wageningen (NL) (in Dutch). Google Scholar Porskamp HAJ, Michielsen JMGP & Van De Zande JC (1997) [Drift-limiting Spray Techniques for Bulb Crops. Drift from an Air-Assisted Field Spray, a Spray with a Screened Spray Boom and a Tunnel Spray for Beds.] IMAG-DLO Rapport, pp. 97–08. Instituut voor Milieu- en Agritechniek, Wageningen (NL) (in Dutch). Google Scholar Porskamp HAJ, Michielsen JMGP, Stallinga H, Van De Zande JC & Van Den Boom APC (1999) [Spray Techniques for Street Trees. Research on Drift and Deposition.] IMAG-DLO Rapport, pp. 99–01. Instituut voor Milieu- en Agritechniek, Wageningen (NL) (in Dutch). Google Scholar Reichmuth CH (1993) [Pressure test for determining the possibility of fumigating buildings, chambers or stored products against pests, with notes on fumigation techniques.] Merkblatt der Biologischen Bundesanstalt für Land- und Forstwirtschaft no. 71. Biologische Bundesanstalt, Braunschweig (DE) (in German). Google Scholar Ross LJ, Nicosia S, McChesney MM, Hefner KL, Gonzalez DA & Seiber JN (1990) Volatilization, off-site deposition, and dissipation of DCPA in the field. Journal of Environmental Quality 19, 715–722. 10.2134/jeq1990.00472425001900040014x CASWeb of Science®Google Scholar SDTF (1997a) A Summary of Ground Application Studies. Stewart Agricultural Research Services, Macon (US). Google Scholar SDTF (1997b) A Summary of Airblast Application Studies. Stewart Agricultural Research Services, Macon (US). Google Scholar SDTF (1997c) A Summary of Aerial Application Studies. Stewart Agricultural Research Services, Macon (US). Google Scholar Siebers J, Binner R & Wittich KP (2002) Investigation on downwind short-range transport of pesticides after application in agricultural crops. Chemosphere (in press). Google Scholar Smith RW & Miller PCH (1994) Drift predictions in the near nozzle region of a flat fan spray. Journal of Agricultural Engineering Research 59, 111–120. 10.1006/jaer.1994.1068 Web of Science®Google Scholar Southcombe ESE, Miller PCH, Ganzelmeier H, Van De Zande JC, Miralles A & Hewitt AJ (1997) The International (BCPC) Spray Classification System including a drift potential factor. In The 1997 Brighton Crop Protection Conference – Weeds, pp. 371–380. BCPC, Farnham (GB). Web of Science®Google Scholar Stork A, Ophoff H, Smelt JH & Führ F (1998) Volatilization of pesticides: measurements under simulated field conditions. In The Lysimeter Concept – Environmental Behaviour of Pesticides (eds F Führ, RJ Hance, JR Plimmer & JO Nelson), pp. 21–39. ACS Symposium Series 699. American Chemical Society, Washington (US). 10.1021/bk-1998-0699.ch002 Web of Science®Google Scholar Taylor AW & Spencer WF (1990) Volatilization and vapor transport processes. In Pesticides in the Soil Environment: Processes, Impacts and Modelling (ed. Cheng HH), pp. 213–269. Soil Science Society of America, Madison (US). Google Scholar Thompson N & Ley AJ (1983) Estimating spray drift using a random walk model of evaporating drops. Journal of Agricultural Engineering Research 28, 419–435. 10.1016/0021-8634(83)90134-8 Web of Science®Google Scholar Tiktak A, Van Den Berg F, Boesten JJTI, Leistra M, Van Der Linden AMA & Van Kraalingen D (2000) Pesticide Emission Assessment at Regional and Local Scales: User Manual of Pearl, Version 1.1. RIVM Report 711401008. Alterra Report 28. RIVM, Bilthoven (NL). Web of Science®Google Scholar Valcore DL (1994) The Spray Drift Task Force: progress in spray drift research and modelling. Down to Earth (Dow Elanco Trade Magazine) 49, no. 2. Google Scholar Van Den Berg F, Bor G, Smidt RA, Van De Peppel-Groen AE & Smelt JH (1995) Volatilization of Parathion and Chlorothalonil after Spraying onto a Potato Crop. Report 102. Winand Staring Centre for Integrated Land, Soil and Water Research, Wageningen (NL). Google Scholar Van Den Berg F, Smelt JH, Boesten JJTI & Teunissen W (1999a) Volatilization of methyl isothiocyanate from soil after application of metam-sodium with two techniques. Journal of Environmental Quality 28, 918–928. 10.2134/jeq1999.00472425002800030024x CASWeb of Science®Google Scholar Van Den Berg F, Kubiak R, Benjey WG, Majewski MS, Yates SR, Reeves GL, Smelt JH & Van Der Linden AMA (1999b) Emission of pesticides into the air. Water, Air and Soil Pollution 115, 195–218. 10.1023/A:1005234329622 CASWeb of Science®Google Scholar Van Dijk HFG & Guicherit R (1999) Atmospheric dispersion of current-use pesticides: a review of the evidence from monitoring studies. Water, Air and Soil Pollution 115, 21–70. 10.1023/A:1005293020536 CASWeb of Science®Google Scholar Van Jaarsveld IA, Addo W & Van Pul J (1999) Modelling of atmospheric transport and deposition of pesticides. Water, Air and Soil Pollution 115, 167–182. 10.1023/A:1005217828714 Web of Science®Google Scholar Van Os EA, Holterman HJ & Klomp G (1993) Management of emission flows of pesticides from glasshouses. Acta Horticulturae no. 372, 135–141. Google Scholar Van Pul WAJ, De Leeuw FAAM, Van Jaarsveld JA, Van Der Gaag MA & Sliggers CJ (1998) The potential for long-range transboundary atmospheric transport. Chemosphere 37, 113–141. 10.1016/S0045-6535(98)00027-7 CASWeb of Science®Google Scholar Walklate PJ (1992) A simulation study of pesticide drift from an air-assisted orchard sprayer. Journal of Agricultural Engineering Research 51, 263–283. 10.1016/0021-8634(92)80042-Q Web of Science®Google Scholar Wania F & Mackay D (1996) Tracking the distribution of persistent organic pollutants. Environmental Science and Technology 30, 390. 10.1021/es962399q CASPubMedWeb of Science®Google Scholar Warneck P (1988) Chemistry of the Natural Atmosphere. International Geophysics Series, Vol. 41. Academic Press, San Diego (US). Google Scholar Watanabe T (2000) Prediction of pesticide concentration in the atmosphere using an atmospheric diffusion model (linear source plume model). Chemosphere 40, 79–90. 10.1016/S0045-6535(99)00248-9 PubMedWeb of Science®Google Scholar Woodrow JE, Seiber JN & Baker LW (1997) Correlation techniques for estimating pesticide volatilization flux and downwind concentrations. Environmental Science and Technology 31, 523–529. 10.1021/es960357w CASWeb of Science®Google Scholar Yates SR, Ernst J, Gan J, Gao F & Yates MV (1996) Methyl bromide emissions from a covered field. II. Volatilization. Journal of Environmental Quality 25, 192–202. 10.2134/jeq1996.00472425002500010025x CASWeb of Science®Google Scholar Van De Zande JC, Holterman HJ & Huijsmans JFM (1995) [Drift Limitation in the Application of Plant Protection Products: Evaluation of the Technical Possibilities of a Drift Model.] IMAG Rapport, pp. 95–15. Instituut voor Milieu- en Agritechniek, Wageningen (NL) (in Dutch). Google Scholar Van De Zande JC, Porskamp HAJ, Michielsen JMGP, Holterman HJ & Huijsmans JFM (2000) Classification of spray applications for driftability, to protect surface water. Aspects of Applied Biology no. 57, pp. 57–65. AAB, Wellesbourne (GB). Google Scholar Citing Literature Volume33, Issue1April 2003Pages 115-129 ReferencesRelatedInformation
Referência(s)