Second‐Generation Total Synthesis of Spirastrellolide F Methyl Ester: The Alkyne Route
2011; Wiley; Volume: 123; Issue: 37 Linguagem: Inglês
10.1002/ange.201103270
ISSN1521-3757
AutoresStefan Benson, Marie‐Pierre Collin, Alexander Arlt, Barbara Gabor, Richard Goddard, Alois Fürstner,
Tópico(s)Carbohydrate Chemistry and Synthesis
ResumoAngewandte ChemieVolume 123, Issue 37 p. 8898-8903 Zuschrift Second-Generation Total Synthesis of Spirastrellolide F Methyl Ester: The Alkyne Route† Dipl.-Chem. Stefan Benson, Dipl.-Chem. Stefan Benson Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany)Search for more papers by this authorDr. Marie-Pierre Collin, Dr. Marie-Pierre Collin Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany)Search for more papers by this authorDipl.-Chem. Alexander Arlt, Dipl.-Chem. Alexander Arlt Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany)Search for more papers by this authorBarbara Gabor, Barbara Gabor Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany)Search for more papers by this authorDr. Richard Goddard, Dr. Richard Goddard Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany)Search for more papers by this authorProf. Alois Fürstner, Corresponding Author Prof. Alois Fürstner [email protected] Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany)Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany)Search for more papers by this author Dipl.-Chem. Stefan Benson, Dipl.-Chem. Stefan Benson Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany)Search for more papers by this authorDr. Marie-Pierre Collin, Dr. Marie-Pierre Collin Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany)Search for more papers by this authorDipl.-Chem. Alexander Arlt, Dipl.-Chem. Alexander Arlt Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany)Search for more papers by this authorBarbara Gabor, Barbara Gabor Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany)Search for more papers by this authorDr. Richard Goddard, Dr. Richard Goddard Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany)Search for more papers by this authorProf. Alois Fürstner, Corresponding Author Prof. Alois Fürstner [email protected] Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany)Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany)Search for more papers by this author First published: 26 July 2011 https://doi.org/10.1002/ange.201103270Citations: 55 † Generous financial support by the MPG and the Fonds der Chemischen Industrie (Kekulé stipends to S.B. and A.A.) is gratefully acknowledged. We thank S. Schulthoff for skillful technical assistance. Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract An einer schwierigen Stelle für Ringschlüsse – der Spiroketaleinheit des Spirastrellolid-F-methylesters – wurde die Leistungsfähigkeit einer katalytischen Alkinspaltung und -aktivierung gezeigt (siehe Schema). Zudem wurde eine bessere Strategie für das Einführen der labilen Seitenkette entwickelt. Supporting Information Detailed facts of importance to specialist readers are published as "Supporting Information". Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Filename Description ange_201103270_sm_miscellaneous_information.pdf2.1 MB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1 1aD. E. Williams, M. Roberge, R. Van Soest, R. J. Andersen, J. Am. Chem. Soc. 2003, 125, 5296–5297; 10.1021/ja0348602 CASPubMedWeb of Science®Google Scholar 1bD. E. Williams, M. Lapawa, X. Feng, T. Tarling, M. Roberge, R. J. Andersen, Org. Lett. 2004, 6, 2607–2610; 10.1021/ol0490983 CASPubMedWeb of Science®Google Scholar 1cD. E. Williams, R. A. Keyzers, K. Warabi, K. Desjardine, J. L. Riffell, M. Roberge, R. J. Andersen, J. Org. Chem. 2007, 72, 9842–9845; 10.1021/jo7018174 CASPubMedWeb of Science®Google Scholar 1dK. Warabi, D. E. Williams, B. O. Patrick, M. Roberge, R. J. Andersen, J. Am. Chem. Soc. 2007, 129, 508–509. 10.1021/ja068271i CASPubMedWeb of Science®Google Scholar 2For reviews on phosphatase inhibitors, see Google Scholar 2aA. McCluskey, A. T. R. Sim, J. A. Sakoff, J. Med. Chem. 2002, 45, 1151–1175; 10.1021/jm010066k CASPubMedWeb of Science®Google Scholar 2bR. E. Honkanen, T. Golden, Curr. Med. Chem. 2002, 9, 2055–2075; 10.2174/0929867023368836 CASPubMedWeb of Science®Google Scholar 2cL. Bialy, H. Waldmann, Angew. Chem. 2005, 117, 3880–3906; 10.1002/ange.200461517 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 3814–3839. 10.1002/anie.200461517 CASPubMedWeb of Science®Google Scholar 3 3aI. Paterson, E. A. Anderson, S. M. Dalby, O. Loiseleur, Org. Lett. 2005, 7, 4121–4224; 10.1021/ol051403c CASPubMedWeb of Science®Google Scholar 3bI. Paterson, E. A. Anderson, S. M. Dalby, O. Loiseleur, Org. Lett. 2005, 7, 4125–4128; 10.1021/ol051405x CASPubMedWeb of Science®Google Scholar 3cJ. Liu, R. P. Hsung, Org. Lett. 2005, 7, 2273–2276; 10.1021/ol050653q CASPubMedWeb of Science®Google Scholar 3dY. Pan, J. K. De Brabander, Synlett 2006, 853–856; CASGoogle Scholar 3eI. Paterson, E. A. Anderson, S. M. Dalby, J. H. Lim, P. Maltas, C. Moessner, Chem. Commun. 2006, 4186–4188; 10.1039/b612697a CASPubMedWeb of Science®Google Scholar 3fC. Wang, C. J. Forsyth, Org. Lett. 2006, 8, 2997–3000; 10.1021/ol0609457 CASPubMedWeb of Science®Google Scholar 3gJ. Liu, J. H. Yang, C. Ko, R. P. Hsung, Tetrahedron Lett. 2006, 47, 6121–6123; 10.1016/j.tetlet.2006.06.067 CASWeb of Science®Google Scholar 3hI. Paterson, E. A. Anderson, S. M. Dalby, J. Genovino, J. H. Lim, C. Moessner, Chem. Commun. 2007, 1852–1854; 10.1039/b700827a CASPubMedWeb of Science®Google Scholar 3iA. B. Smith, D.-S. Kim, Org. Lett. 2007, 9, 3311–3314; 10.1021/ol071282b CASPubMedWeb of Science®Google Scholar 3jC. Wang, C. J. Forsyth, Heterocycles 2007, 72, 621–632; 10.3987/COM-07-S(K)57 CASWeb of Science®Google Scholar 3kK. A. Keaton, A. J. Phillips, Org. Lett. 2008, 10, 1083–1086; 10.1021/ol702955m CASPubMedWeb of Science®Google Scholar 3lS. Chandrasekhar, C. Rambabu, A. S. Reddy, Org. Lett. 2008, 10, 4355–4357; 10.1021/ol801771s CASPubMedWeb of Science®Google Scholar 3mJ.-H. Yang, J. Liu, R. P. Hsung, Org. Lett. 2008, 10, 2525–2528; 10.1021/ol8008057 CASPubMedWeb of Science®Google Scholar 3nJ. L.-Y. Chen, M. A. Brimble, Chem. Commun. 2010, 46, 3967–3969; 10.1039/c0cc00056f CASWeb of Science®Google Scholar 3oA. B. Smith, H. Smits, D. S. Kim, Tetrahedron 2010, 66, 6597–6605; 10.1016/j.tet.2010.01.082 CASPubMedWeb of Science®Google Scholar 3pG. Sabitha, A. S. Rao, J. S. Yadav, Synthesis 2010, 505–509. 10.1055/s-0029-1218588 CASWeb of Science®Google Scholar 4 4aA. Fürstner, M. D. B. Fenster, B. Fasching, C. Godbout, K. Radkowski, Angew. Chem. 2006, 118, 5632–5636; 10.1002/ange.200601654 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 5506–5510; 10.1002/anie.200601654 CASPubMedWeb of Science®Google Scholar 4bA. Fürstner, M. D. B. Fenster, B. Fasching, C. Godbout, K. Radkowski, Angew. Chem. 2006, 118, 5636–5641; 10.1002/ange.200601655 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 5510–5515; 10.1002/anie.200601655 CASPubMedWeb of Science®Google Scholar 4cA. Fürstner, B. Fasching, G. W. O′Neil, M. D. B. Fenster, C. Godbout, J. Ceccon, Chem. Commun. 2007, 3045–3047. 10.1039/b707835h CASPubMedWeb of Science®Google Scholar 5I. Paterson, S. M. Dalby, Nat. Prod. Rep. 2009, 26, 865–873. 10.1039/b906991g CASPubMedWeb of Science®Google Scholar 6 6aI. Paterson, E. A. Anderson, S. M. Dalby, J. H. Lim, J. Genovino, P. Maltas, C. Moessner, Angew. Chem. 2008, 120, 3058–3062; 10.1002/ange.200705565 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 3016–3020; 10.1002/anie.200705565 CASPubMedWeb of Science®Google Scholar 6bI. Paterson, E. A. Anderson, S. M. Dalby, J. H. Lim, J. Genovino, P. Maltas, C. Moessner, Angew. Chem. 2008, 120, 3063–3067; 10.1002/ange.200705566 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 3021–3025; 10.1002/anie.200705566 CASPubMedWeb of Science®Google Scholar 6cI. Paterson, S. M. Dalby, P. Maltas, Isr. J. Chem. 2011, 51, 406–419. 10.1002/ijch.201100007 CASWeb of Science®Google Scholar 7 7aG. W. O′Neil, J. Ceccon, S. Benson, M.-P. Collin, B. Fasching, A. Fürstner, Angew. Chem. 2009, 121, 10124–10129; 10.1002/ange.200906121 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 9940–9945; 10.1002/anie.200906121 CASWeb of Science®Google Scholar 7bS. Benson, M.-P. Collin, G. W. O′Neil, J. Ceccon, B. Fasching, M. D. B. Fenster, C. Godbout, K. Radkowski, R. Goddard, A. Fürstner, Angew. Chem. 2009, 121, 10130–10134; 10.1002/ange.200906122 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 9946–9950. 10.1002/anie.200906122 CASWeb of Science®Google Scholar 8 8aK. Utimoto, Pure Appl. Chem. 1983, 55, 1845–1852; 10.1351/pac198355111845 CASWeb of Science®Google Scholar 8bB. Liu, J. K. De Brabander, Org. Lett. 2006, 8, 4907–4910; 10.1021/ol0619819 CASPubMedWeb of Science®Google Scholar 8cA. Aponick, C.-Y. Li, J. A. Palmes, Org. Lett. 2009, 11, 121–124; 10.1021/ol802491m CASPubMedWeb of Science®Google Scholar 8dreview: B. Alcaide, P. Almendros, J. M. Alonso, Org. Biomol. Chem. 2011, 9, 4405–4416. 10.1039/c1ob05249g CASPubMedWeb of Science®Google Scholar 9 9aA. Fürstner, P. W. Davies, Angew. Chem. 2007, 119, 3478–3519; 10.1002/ange.200604335 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 3410–3449; 10.1002/anie.200604335 CASPubMedWeb of Science®Google Scholar 9bD. J. Gorin, F. D. Toste, Nature 2007, 446, 395–403; 10.1038/nature05592 CASPubMedWeb of Science®Google Scholar 9cE. Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326–3350; 10.1021/cr0684319 CASPubMedWeb of Science®Google Scholar 9dA. S. K. Hashmi, Chem. Rev. 2007, 107, 3180–3211. 10.1021/cr000436x CASPubMedWeb of Science®Google Scholar 10 10aA. Fürstner, G. Seidel, Angew. Chem. 1998, 110, 1758–1760; 10.1002/(SICI)1521-3757(19980619)110:12 3.0.CO;2-I Google ScholarAngew. Chem. Int. Ed. 1998, 37, 1734–1736; 10.1002/(SICI)1521-3773(19980703)37:12 3.0.CO;2-6 CASPubMedWeb of Science®Google Scholar 10bA. Fürstner, O. Guth, A. Rumbo, G. Seidel, J. Am. Chem. Soc. 1999, 121, 11108–11113; 10.1021/ja992074k CASWeb of Science®Google Scholar 10cA. Fürstner, C. Mathes, C. W. Lehmann, Chem. Eur. J. 2001, 7, 5299–5317. 10.1002/1521-3765(20011217)7:24 3.0.CO;2-X CASPubMedWeb of Science®Google Scholar 11 11aA. Fürstner, P. W. Davies, Chem. Commun. 2005, 2307–2320; 10.1039/b419143a CASPubMedWeb of Science®Google Scholar 11bW. Zhang, J. S. Moore, Adv. Synth. Catal. 2007, 349, 93–120; 10.1002/adsc.200600476 CASWeb of Science®Google Scholar 11cR. R. Schrock, C. Czekelius, Adv. Synth. Catal. 2007, 349, 55–77; 10.1002/adsc.200600459 CASWeb of Science®Google Scholar 11dX. Wu, M. Tamm, Beilstein J. Org. Chem. 2011, 7, 82–93. 10.3762/bjoc.7.12 CASPubMedWeb of Science®Google Scholar 12 12aA. Labonne, T. Kribber, L. Hintermann, Org. Lett. 2006, 8, 5853–5856; 10.1021/ol062455k CASPubMedWeb of Science®Google Scholar 12bL. Hintermann, T. T. Dang, A. Labonne, T. Kribber, L. Xiao, P. Naumov, Chem. Eur. J. 2009, 15, 7167–7179; 10.1002/chem.200900563 CASPubMedWeb of Science®Google Scholar 12cF. Boeck, T. Kribber, L. Xiao, L. Hintermann, J. Am. Chem. Soc. 2011, 133, 8138–8141; 10.1021/ja2026823 CASPubMedWeb of Science®Google Scholar 12dL. Hintermann in C-X Bond Formation, Vol. 31 (Ed.: ), Springer, Berlin, Top. Organomet. Chem. 2010, pp. 123–155. 10.1007/978-3-642-12073-2_6 Web of Science®Google Scholar 13 13aS. Ohira, Synth. Commun. 1989, 19, 561–564; 10.1080/00397918908050700 CASWeb of Science®Google Scholar 13bS. Müller, B. Liepold, G. J. Roth, H. J. Bestmann, Synlett 1996, 521–522. 10.1055/s-1996-5474 CASWeb of Science®Google Scholar 14K. Hattori, H. Yamamoto, J. Org. Chem. 1993, 58, 5301–5303. 10.1021/jo00072a005 CASWeb of Science®Google Scholar 15M. S. M. Timmer, A. Abidekian, P. H. Seeberger, Angew. Chem. 2005, 117, 7777–7780; 10.1002/ange.200502742 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 7605–7607. 10.1002/anie.200502742 CASPubMedWeb of Science®Google Scholar 16Y.-G. Suh, B.-A. Koo, E.-N. Kim, N.-S. Choi, Tetrahedron Lett. 1995, 36, 2089–2092. 10.1016/0040-4039(95)00217-Z CASWeb of Science®Google Scholar 17Triflimide 20 was preferred over PhN(Tf)2 or Comins reagent because the by-products formed were more readily separable from the enol triflate. Moreover, this reagent can be sublimed, thus ensuring dryness and hence high yields in the reaction with the enolate, cf. Ref. [7]. Google Scholar 18 18aN. Miyaura, T. Ishiyama, H. Sasaki, M. Ishikawa, M. Satoh, A. Suzuki, J. Am. Chem. Soc. 1989, 111, 314–321; 10.1021/ja00183a048 CASWeb of Science®Google Scholar 18breview: S. R. Chemler, D. Trauner, S. J. Danishefsky, Angew. Chem. 2001, 113, 4676–4701; 10.1002/1521-3757(20011217)113:24 3.0.CO;2-B Google ScholarAngew. Chem. Int. Ed. 2001, 40, 4544–4568. 10.1002/1521-3773(20011217)40:24 3.0.CO;2-N CASPubMedWeb of Science®Google Scholar 19Review: A. Parenty, X. Moreau, J.-M. Campagne, Chem. Rev. 2006, 106, 911–939. 10.1021/cr0301402 CASPubMedWeb of Science®Google Scholar 20J. Heppekausen, R. Stade, R. Goddard, A. Fürstner, J. Am. Chem. Soc. 2010, 132, 11045–11057. 10.1021/ja104800w CASPubMedWeb of Science®Google Scholar 21 21aV. Hickmann, M. Alcarazo, A. Fürstner, J. Am. Chem. Soc. 2010, 132, 11042–11044; 10.1021/ja104796a CASPubMedWeb of Science®Google Scholar 21bK. Micoine, A. Fürstner, J. Am. Chem. Soc. 2010, 132, 14064–14066. 10.1021/ja107141p CASPubMedWeb of Science®Google Scholar 22 22aY. Li, F. Zhou, C. J. Forsyth, Angew. Chem. 2007, 119, 283–286; 10.1002/ange.200601963 Web of Science®Google ScholarAngew. Chem. Int. Ed. 2007, 46, 279–282; 10.1002/anie.200601963 CASPubMedWeb of Science®Google Scholar 22bB. M. Trost, B. M. O′Boyle, J. Am. Chem. Soc. 2008, 130, 16190–16192; 10.1021/ja807127s CASPubMedWeb of Science®Google Scholar 22cB. M. Trost, B. M. O′Boyle, D. Hund, J. Am. Chem. Soc. 2009, 131, 15061–15074; 10.1021/ja906056v CASPubMedWeb of Science®Google Scholar 22dC. Fang, Y. Pang, C. J. Forsyth, Org. Lett. 2010, 12, 4528–4531. 10.1021/ol101833h CASPubMedWeb of Science®Google Scholar 23For a leading study on the formation of enol ethers in the context of natural product synthesis from hydroxy-alkynes by means of gold catalysis, see Google Scholar 23aB. M. Trost, G. Dong, Nature 2008, 456, 485–488; 10.1038/nature07543 CASPubMedWeb of Science®Google Scholar 23bB. M. Trost, G. Dong, J. Am. Chem. Soc. 2010, 132, 16403–16416. 10.1021/ja105129p CASPubMedWeb of Science®Google Scholar 24A. Fürstner, Chem. Soc. Rev. 2009, 38, 3208–3221. 10.1039/b816696j CASPubMedWeb of Science®Google Scholar 25Other catalysts such as AuCl3 or PtCl4 decomposed the starting material. Google Scholar 26C. Nieto-Oberhuber, S. López, A. M. Echavarren, J. Am. Chem. Soc. 2005, 127, 6178–6179. 10.1021/ja042257t CASPubMedWeb of Science®Google Scholar 27This is ascribed to the instability of the furanoid product; its decomposition may alter the observed ratio. Google Scholar 28Anisotropic displacement parameters are drawn at the 50 % probability level. CCDC 824552 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Google Scholar 29P. R. Blakemore, W. J. Cole, P. J. Kocieński, A. Morley, Synlett 1998, 26–28. 10.1055/s-1998-1570 CASWeb of Science®Google Scholar 30For further applications of RCAM to the formation of products other than stereodefined olefins, see Google Scholar 30aA. Fürstner, A.-S. Castanet, K. Radkowski, C. W. Lehmann, J. Org. Chem. 2003, 68, 1521–1528; 10.1021/jo026686q CASPubMedWeb of Science®Google Scholar 30bA. Fürstner, O. Larionov, S. Flügge, Angew. Chem. 2007, 119, 5641–5644; 10.1002/ange.200701640 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 5545–5548; 10.1002/anie.200701640 CASPubMedWeb of Science®Google Scholar 30cA. Fürstner, S. Flügge, O. Larionov, Y. Takahashi, T. Kubota, J. Kobayashi, Chem. Eur. J. 2009, 15, 4011–4029. 10.1002/chem.200802068 CASPubMedWeb of Science®Google Scholar 31For representative total syntheses relying on an RCAM/semireduction, see Ref. [21] and the following: Google Scholar 31aV. V. Vintonyak, M. E. Maier, Angew. Chem. 2007, 119, 5301–5303; 10.1002/ange.200701423 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 5209–5211; 10.1002/anie.200701423 CASPubMedWeb of Science®Google Scholar 31bB. J. Smith, G. A. Sulikowski, Angew. Chem. 2010, 122, 1643–1646; 10.1002/ange.200905732 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 1599–1602; 10.1002/anie.200905732 CASPubMedWeb of Science®Google Scholar 31cM. G. Nilson, R. L. Funk, Org. Lett. 2010, 12, 4912–4915; 10.1021/ol102079z CASPubMedWeb of Science®Google Scholar 31dA. Fürstner, M. Bindl, L. Jean, Angew. Chem. 2007, 119, 9435–9438; 10.1002/ange.200703839 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 9275–9278; 10.1002/anie.200703839 CASPubMedWeb of Science®Google Scholar 31eA. Fürstner, D. De Souza, L. Turet, M. D. B. Fenster, L. Parra-Rapado, C. Wirtz, R. Mynott, C. W. Lehmann, Chem. Eur. J. 2007, 13, 115–134; 10.1002/chem.200601135 CASPubMedWeb of Science®Google Scholar 31fA. Fürstner, L. Turet, Angew. Chem. 2005, 117, 3528–3532; 10.1002/ange.200500390 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 3462–3466; 10.1002/anie.200500390 CASPubMedWeb of Science®Google Scholar 31gA. Fürstner, K. Radkowski, J. Grabowski, C. Wirtz, R. Mynott, J. Org. Chem. 2000, 65, 8758–8762; 10.1021/jo0012952 CASPubMedWeb of Science®Google Scholar 31hA. Fürstner, K. Grela, C. Mathes, C. W. Lehmann, J. Am. Chem. Soc. 2000, 122, 11799–11805. 10.1021/ja003119g CASWeb of Science®Google Scholar Citing Literature Volume123, Issue37September 5, 2011Pages 8898-8903 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation
Referência(s)