Stereospecific Copper‐Catalyzed CH Allylation of Electron‐Deficient Arenes with Allyl Phosphates
2011; Wiley; Volume: 123; Issue: 13 Linguagem: Inglês
10.1002/ange.201007733
ISSN1521-3757
AutoresTomoyuki Yao, Koji Hirano, Tetsuya Satoh, Masahiro Miura,
Tópico(s)Synthesis and Catalytic Reactions
ResumoAngewandte ChemieVolume 123, Issue 13 p. 3046-3050 Zuschrift Stereospecific Copper-Catalyzed CH Allylation of Electron-Deficient Arenes with Allyl Phosphates† Tomoyuki Yao, Tomoyuki Yao Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan), Fax: (+81) 6-6879-7362Search for more papers by this authorDr. Koji Hirano, Corresponding Author Dr. Koji Hirano [email protected] Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan), Fax: (+81) 6-6879-7362Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan), Fax: (+81) 6-6879-7362Search for more papers by this authorProf. Dr. Tetsuya Satoh, Prof. Dr. Tetsuya Satoh Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan), Fax: (+81) 6-6879-7362Search for more papers by this authorProf. Dr. Masahiro Miura, Corresponding Author Prof. Dr. Masahiro Miura [email protected] Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan), Fax: (+81) 6-6879-7362Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan), Fax: (+81) 6-6879-7362Search for more papers by this author Tomoyuki Yao, Tomoyuki Yao Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan), Fax: (+81) 6-6879-7362Search for more papers by this authorDr. Koji Hirano, Corresponding Author Dr. Koji Hirano [email protected] Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan), Fax: (+81) 6-6879-7362Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan), Fax: (+81) 6-6879-7362Search for more papers by this authorProf. Dr. Tetsuya Satoh, Prof. Dr. Tetsuya Satoh Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan), Fax: (+81) 6-6879-7362Search for more papers by this authorProf. Dr. Masahiro Miura, Corresponding Author Prof. Dr. Masahiro Miura [email protected] Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan), Fax: (+81) 6-6879-7362Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan), Fax: (+81) 6-6879-7362Search for more papers by this author First published: 25 February 2011 https://doi.org/10.1002/ange.201007733Citations: 46 † This work was partly supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology (Japan). Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Schnell und sicher führt die hoch stereospezifische kupferkatalysierte Titelreaktion zu Allylarenen mit elektronenarmen fluorierten Arensystemen (siehe Schema; acac=Acetylacetonat, phen=1,10-Phenanthrolin, TBS=tBuMe2Si). Supporting Information Detailed facts of importance to specialist readers are published as "Supporting Information". Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Filename Description ange_201007733_sm_miscellaneous_information.pdf929.7 KB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1For a review, see: Google Scholar 1aF. C. Pigge, Synthesis 2010, 1745; for selected recent advances with copper, see: 10.1055/s-0029-1218756 CASWeb of Science®Google Scholar 1bM. A. Kacprzynski, T. L. May, S. A. Kazane, A. H. Hoveyda, Angew. Chem. 2007, 119, 4638; 10.1002/ange.200700841 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 4554; 10.1002/anie.200700841 CASPubMedWeb of Science®Google Scholar 1cJ. Norinder, K. Bogár, L. Kanupp, J.-E. Bäckvall, Org. Lett. 2007, 9, 5095; 10.1021/ol702261t CASPubMedWeb of Science®Google Scholar 1dC. A. Falciola, A. Alexakis, Chem. Eur. J. 2008, 14, 10615; 10.1002/chem.200801309 CASPubMedWeb of Science®Google Scholar 1eK. B. Selim, Y. Matsumoto, K.-i. Yamada, K. Tomioka, Angew. Chem. 2009, 121, 8889; 10.1002/ange.200904676 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 8733; 10.1002/anie.200904676 CASPubMedWeb of Science®Google Scholar 1fH. Ohmiya, N. Yokokawa, M. Sawamura, Org. Lett. 2010, 12, 2438; 10.1021/ol100841y CASPubMedWeb of Science®Google Scholar 1gA. M. Whittaker, R. P. Rucker, G. Lalic, Org. Lett. 2010, 12, 3216; 10.1021/ol101171v CASPubMedWeb of Science®Google Scholar 1hF. Gao, Y. Lee, K. Mandai, A. H. Hoveyda, Angew. Chem. 2010, 122, 8548; 10.1002/ange.201005124 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 8370; with palladium, see: 10.1002/anie.201005124 CASPubMedWeb of Science®Google Scholar 1iH. Ohmiya, Y. Makida, T. Tanaka, M. Sawamura, J. Am. Chem. Soc. 2008, 130, 17276; 10.1021/ja808673n CASPubMedWeb of Science®Google Scholar 1jT. Nishikata, B. H. Lipshutz, J. Am. Chem. Soc. 2009, 131, 12103; 10.1021/ja905082c CASPubMedWeb of Science®Google Scholar 1kH. Ohmiya, Y. Makida, D. Li, M. Tanabe, M. Sawamura, J. Am. Chem. Soc. 2010, 132, 879; 10.1021/ja9092264 CASPubMedWeb of Science®Google Scholar 1lD. Li, T. Tanaka, H. Ohmiya, M. Sawamura, Org. Lett. 2010, 12, 3344; with rhodium, see: 10.1021/ol101114r CASPubMedWeb of Science®Google Scholar 1mP. A. Evans, D. Uraguchi, J. Am. Chem. Soc. 2003, 125, 7158; 10.1021/ja035216q CASPubMedWeb of Science®Google Scholar 1nB. Yu, F. Menard, N. Isono, M. Lautens, Synthesis 2009, 853; with iridium, see: Web of Science®Google Scholar 1oD. Polet, X. Rathgeb, C. A. Falciola, J. B. Langlois, S. El Hajjaji, A. Alexakis, Chem. Eur. J. 2009, 15, 1205. 10.1002/chem.200801879 CASPubMedWeb of Science®Google Scholar 2 2aG. A. Olah in Friedel–Crafts and Related Reactions, Vol. II, Part 1, Wiley-Interscience, New York, 1964; Google Scholar 2bG. A. Olah in Friedel–Crafts Chemistry, Wiley, New York, 1973; Google Scholar 2cR. M. Roberts, A. A. Khalaf in Friedel–Crafts Alkylation Chemistry. A Century of Discovery, Marcel Dekker, New York, 1984; Google Scholar 2dM. Bandini, A, Melloni, A. Umani-Ronchi, Angew. Chem. 2004, 116, 560; 10.1002/ange.200301679 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 550; 10.1002/anie.200301679 CASPubMedWeb of Science®Google Scholar 2eJ. S. Carey, D. Laffran, C. Thomson, M. T. Williams, Org. Biomol. Chem. 2006, 4, 2337. 10.1039/b602413k CASPubMedWeb of Science®Google Scholar 3Recently, some successful intramolecular Friedel–Crafts-type allylations of electron-deficient arenes have been reported, see: Google Scholar 3aR. Hayashi, G. R. Cook, Org. Lett. 2007, 9, 1311; 10.1021/ol070235g CASPubMedWeb of Science®Google Scholar 3bM. Bandini, M. Tragni, A. Umani-Ronchi, Adv. Synth. Catal. 2009, 351, 2521. 10.1002/adsc.200900441 CASWeb of Science®Google Scholar 4Recent reviews: Google Scholar 4aD. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174; 10.1021/cr0509760 CASPubMedWeb of Science®Google Scholar 4bT. Satoh, M. Miura, Chem. Lett. 2007, 36, 200; 10.1246/cl.2007.200 CASWeb of Science®Google Scholar 4cL. C. Campeau, D. R. Stuart, K. Fagnou, Aldrichimica Acta 2007, 40, 35; CASWeb of Science®Google Scholar 4dI. V. Seregin, V. Gevorgyan, Chem. Soc. Rev. 2007, 36, 1173; 10.1039/b606984n CASPubMedWeb of Science®Google Scholar 4eY. J. Park, J.-W. Park, C.-H. Jun, Acc. Chem. Res. 2008, 41, 222; 10.1021/ar700133y CASPubMedWeb of Science®Google Scholar 4fL. C. Lewis, R. G. Bergman, J. A. Ellman, Acc. Chem. Res. 2008, 41, 1013; 10.1021/ar800042p CASPubMedWeb of Science®Google Scholar 4gF. Kakiuchi, T. Kochi, Synthesis 2008, 3013; 10.1055/s-2008-1067256 CASWeb of Science®Google Scholar 4hO. Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem. Res. 2009, 42, 1074; 10.1021/ar9000058 CASPubMedWeb of Science®Google Scholar 4iA. A. Kulkarni, O. Daugulis, Synthesis 2009, 4087; CASWeb of Science®Google Scholar 4jX. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. 2009, 121, 5196; 10.1002/ange.200806273 Web of Science®Google ScholarAngew. Chem. Int. Ed. 2009, 48, 5094; 10.1002/anie.200806273 CASPubMedWeb of Science®Google Scholar 4kL. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. 2009, 121, 9976; 10.1002/ange.200902996 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 9792; 10.1002/anie.200902996 CASPubMedWeb of Science®Google Scholar 4lC.-L. Sun, B.-J. Li, Z.-J. Shi, Chem. Commun. 2010, 46, 677; 10.1039/b908581e CASPubMedWeb of Science®Google Scholar 4mT. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147; 10.1021/cr900184e CASPubMedWeb of Science®Google Scholar 4nA. S. Dudnik, V. Gevorgyan, Angew. Chem. 2010, 122, 2140; 10.1002/ange.200906755 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 2096; 10.1002/anie.200906755 CASPubMedWeb of Science®Google Scholar 4oT. Satoh, M. Miura, Synthesis 2010, 3395; 10.1055/s-0030-1258225 CASWeb of Science®Google Scholar 4pL. Ackermann, Chem. Commun. 2010, 46, 4866. 10.1039/c0cc00778a CASPubMedWeb of Science®Google Scholar 5Hoarau and co-workers reported a palladium-catalyzed direct coupling of oxazole-4-carboxylate with allyl chlorides. However, the corresponding alkenylated products were isolated as a result of the concomitant olefin isomerization: C. Verrier, C. Hoarau, F. Marsais, Org. Biomol. Chem. 2009, 7, 647. 10.1039/b816374j CASPubMedWeb of Science®Google Scholar 6Metal-catalyzed CH functionalization of polyfluoroarenes; arylation: Google Scholar 6aM. Lafrance, C. N. Rowley, T. K. Woo, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 8754; 10.1021/ja062509l CASPubMedWeb of Science®Google Scholar 6bH.-Q. Do, O. Daugulis, J. Am. Chem. Soc. 2008, 130, 1128; 10.1021/ja077862l CASPubMedWeb of Science®Google Scholar 6cC.-Y. He, S. Fan, X. Zhang, J. Am. Chem. Soc. 2010, 132, 12850; 10.1021/ja106046p CASPubMedWeb of Science®Google Scholar 6dY. Wei, W. Su, J. Am. Chem. Soc. 2010, 132, 16377; alkenylation and alkylation: 10.1021/ja109383e CASPubMedWeb of Science®Google Scholar 6eY. Nakao, N. Kashihara, K. S. Kanyiva, T. Hiyama, J. Am. Chem. Soc. 2008, 130, 16170; 10.1021/ja807258m CASPubMedWeb of Science®Google Scholar 6fX. Zhang, S. Fan, C.-Y. He, X. Wan, Q.-Q. Min, J. Yang, Z.-X. Jiang, J. Am. Chem. Soc. 2010, 132, 4506; 10.1021/ja908434e CASPubMedWeb of Science®Google Scholar 6gZ.-M. Sun, J. Zhang, R. S. Manan, P. Zhao, J. Am. Chem. Soc. 2010, 132, 6935; benzylation: 10.1021/ja102575d CASPubMedWeb of Science®Google Scholar 6hS. Fan, C.-Y. He, X. Zhang, Chem. Commun. 2010, 46, 4926; alkynylation: 10.1039/c0cc00598c CASPubMedWeb of Science®Google Scholar 6iY. Wei, H. Zhao, J. Kan, W. Su, M. Hong, J. Am. Chem. Soc. 2010, 132, 2522; carboxylation: 10.1021/ja910461e CASPubMedWeb of Science®Google Scholar 6jI. I. F. Boogaerts, S. P. Nolan, J. Am. Chem. Soc. 2010, 132, 8858; amination; 10.1021/ja103429q CASPubMedWeb of Science®Google Scholar 6kQ. Wang, S. L. Schreiber, Org. Lett. 2009, 11, 5178; 10.1021/ol902079g CASPubMedWeb of Science®Google Scholar 6lH. Zhao, M. Wang, W. Su, M. Hong, Adv. Synth. Catal. 2010, 352, 1301; stannylation: 10.1002/adsc.200900856 CASWeb of Science®Google Scholar 6mM. E. Doster, J. A. Hatnean, T. Jeftic, S. Modi, S. A. Johnson, J. Am. Chem. Soc. 2010, 132, 11923. 10.1021/ja105588v CASPubMedWeb of Science®Google Scholar 7 7aE. A. Meyer, R. K. Castellano, F. Diederich, Angew. Chem. 2003, 115, 1244; 10.1002/ange.200390290 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 1210; 10.1002/anie.200390319 CASPubMedWeb of Science®Google Scholar 7bK. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881; 10.1126/science.1131943 CASPubMedWeb of Science®Google Scholar 7cM. Hird, Chem. Soc. Rev. 2007, 36, 2070; 10.1039/b610738a CASPubMedWeb of Science®Google Scholar 7dS. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320; 10.1039/B610213C CASPubMedWeb of Science®Google Scholar 7eH. Amii, K. Uneyama, Chem. Rev. 2009, 109, 2119. 10.1021/cr800388c CASPubMedWeb of Science®Google Scholar 8 8aT. Yoshizumi, H. Tsurugi, T. Satoh, M. Miura, Tetrahedron Lett. 2008, 49, 1598; 10.1016/j.tetlet.2008.01.042 CASWeb of Science®Google Scholar 8bT. Yoshizumi, T. Satoh, K. Hirano, D. Matsuo, A. Orita, J. Otera, M. Miura, Tetrahedron Lett. 2009, 50, 3273; 10.1016/j.tetlet.2009.02.039 CASWeb of Science®Google Scholar 8cT. Kawano, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2009, 11, 3072; 10.1021/ol9011212 CASPubMedWeb of Science®Google Scholar 8dM. Kitahara, K. Hirano, H. Tsurugi, T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 1772; 10.1002/chem.200902916 CASPubMedWeb of Science®Google Scholar 8eT. Kawano, N. Matsuyama, K. Hirano, T. Satoh, M. Miura, J. Org. Chem. 2010, 75, 1764; 10.1021/jo9025622 CASPubMedWeb of Science®Google Scholar 8fN. Matsuyama, M. Kitahara, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2010, 12, 2358; 10.1021/ol100699g CASPubMedWeb of Science®Google Scholar 8gT. Kawano, K. Hirano, T. Satoh, M. Miura, J. Am. Chem. Soc. 2010, 132, 6900. 10.1021/ja101939r CASPubMedWeb of Science®Google Scholar 9For selected works on the copper-mediated direct CH functionalization, see: Google Scholar 9aZ. Li, C.-J. Li, J. Am. Chem. Soc. 2006, 128, 56; 10.1021/ja056541b CASPubMedWeb of Science®Google Scholar 9bX. Chen, X.-S. Hao, C. E. Goodhue, J.-Q. Yu, J. Am. Chem. Soc. 2006, 128, 6790; 10.1021/ja061715q CASPubMedWeb of Science®Google Scholar 9cH.-Q. Do, O. Daugulis, J. Am. Chem. Soc. 2007, 129, 12404; 10.1021/ja075802+ CASPubMedWeb of Science®Google Scholar 9dL. Ackermann, H. K. Potukuchi, D. Landsberg, R. Vicente, Org. Lett. 2008, 10, 3081; 10.1021/ol801078r CASPubMedWeb of Science®Google Scholar 9eI. Ban, T. Sudo, T. Taniguchi, K. Itami, Org. Lett. 2008, 10, 3607; 10.1021/ol8013717 CASPubMedWeb of Science®Google Scholar 9fT. Hamada, X. Ye, S. S. Stahl, J. Am. Chem. Soc. 2008, 130, 833; 10.1021/ja077406x CASPubMedWeb of Science®Google Scholar 9gG. Brasche, S. L. Buchwald, Angew. Chem. 2008, 120, 1958.; 10.1002/ange.200705420 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 1932; 10.1002/anie.200705420 CASPubMedWeb of Science®Google Scholar 9hS. Ueda, H. Nagasawa, Angew. Chem. 2008, 120, 6511; 10.1002/ange.200801240 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 6411; 10.1002/anie.200801240 CASPubMedWeb of Science®Google Scholar 9iR. J. Phipps, N. P. Grimster, M. J. Gaunt, J. Am. Chem. Soc. 2008, 130, 8172; 10.1021/ja801767s CASPubMedWeb of Science®Google Scholar 9jS. Yotphan, R. G. Bergman, J. A. Ellman, Org. Lett. 2009, 11, 1511; 10.1021/ol900103a CASPubMedWeb of Science®Google Scholar 9kR. J. Phipps, M. J. Gaunt, Science 2009, 323, 1593; 10.1126/science.1169975 CASPubMedWeb of Science®Google Scholar 9lD. Zhao, W. Wang, F. Yang, J. Lan, L. Yang, G. Gao, J. You, Angew. Chem. 2009, 121, 3346; 10.1002/ange.200900413 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 3296; 10.1002/anie.200900413 CASPubMedWeb of Science®Google Scholar 9mF. Besselièvre, S. Piguel, Angew. Chem. 2009, 121, 9717; 10.1002/ange.200904776 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 9553; 10.1002/anie.200904776 CASPubMedWeb of Science®Google Scholar 9nD. Monguchi, T. Fujiwara, H. Furukawa, A. Mori, Org. Lett. 2009, 11, 1607; 10.1021/ol900298e CASPubMedWeb of Science®Google Scholar 9oJ. J. Mousseau, J. A. Bull, A. B. Charette, Angew. Chem. 2010, 122, 1133; 10.1002/ange.200906020 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 1115. 10.1002/anie.200906020 CASPubMedWeb of Science®Google Scholar 10Without copper catalysts, the product was detected in less than 2 % yield (determined by gas chromatography analysis). See the Supporting Information for the detailed optimization studies. Google Scholar 11For the pKa values of representative fluoroarenes, see: K. Shen, Y. Fu, J.-N. Li, L. Liu, Q.-X. Guo, Tetrahedron 2007, 63, 1568. 10.1016/j.tet.2006.12.032 CASWeb of Science®Google Scholar 12E. R. Bartholomew, S. H. Bertz, S. Cope, M. Murphy, C. A. Ogle, J. Am. Chem. Soc. 2008, 130, 11244. 10.1021/ja801186c CASPubMedWeb of Science®Google Scholar 13Bäckvall et al. reported that the stoichiometric reaction of monoarylcopper with allylic electrophile provided the allylated product with a high SN2′ selectivity whilst the diaryl cuprate resulted in a mixture of regioisomers: Google Scholar 13aJ.-E. Bäckvall, M. Sellén, B. Grant, J. Am. Chem. Soc. 1990, 112, 6615; 10.1021/ja00174a024 Web of Science®Google Scholar 13bJ.-E. Bäckvall, E. S. M. Persson, A. Bombrun, J. Org. Chem. 1994, 59, 4126; see also: 10.1021/jo00094a024 Web of Science®Google Scholar 13cN. Yoshikai, S.-L. Zhang, E. Nakamura, J. Am. Chem. Soc. 2008, 130, 12862. 10.1021/ja804682r CASPubMedWeb of Science®Google Scholar 14 14aA. Yanagisawa, N. Nomura, H. Yamamoto, Synlett 1991, 513; 10.1055/s-1991-20783 Web of Science®Google Scholar 14bM. P. T. Sjögren, S. Hansson, B. Åkermark, A. Vitagliano, Organometallics 1994, 13, 1963; 10.1021/om00017a062 Web of Science®Google Scholar 14cH. Frisell, B. Åkermark, Organometallics 1995, 14, 561; 10.1021/om00001a078 CASWeb of Science®Google Scholar 14dR. Takeuchi, M. Kashino, J. Am. Chem. Soc. 1998, 120, 8647; 10.1021/ja981560p CASWeb of Science®Google Scholar 14eU. Kazmaier, F. L. Zumpe, Angew. Chem. 2000, 112, 805; 10.1002/(SICI)1521-3757(20000218)112:4 3.0.CO;2-F Google ScholarAngew. Chem. Int. Ed. 2000, 39, 802; 10.1002/(SICI)1521-3773(20000218)39:4 3.0.CO;2-Y CASPubMedWeb of Science®Google Scholar 14fB. L. Ashfeld, K. A. Miller, S. F. Martin, Org. Lett. 2004, 6, 1321; 10.1021/ol0496529 CASPubMedWeb of Science®Google Scholar 14gY. Yatsumonji, Y. Ishida, A. Tsubouchi, T. Takeda, Org. Lett. 2007, 9, 4603; 10.1021/ol702122d CASPubMedWeb of Science®Google Scholar 14hA. Bayer, U. Kazmaier, Org. Lett. 2010, 12, 4960. 10.1021/ol102106v CASPubMedWeb of Science®Google Scholar 151,3-Allylic strain in stereocontrol: R. W. Hoffmann, Chem. Rev. 1989, 89, 1841. 10.1021/cr00098a009 CASWeb of Science®Google Scholar 16For base-assisted direct cupration, see Ref. [6h,j,k], [8], and [9c,j,l,m]. Google Scholar 17A similar pathway without the rotation between σ-allyl isomers was proposed in the copper-catalyzed allylic substitution with aryl Grignard reagents, but the Z stereospecificity was not mentioned: Ref. [1c]. The use of a [Cu(acac)2]/bpy or CuI/phen instead of [Cu(acac)2]/phen had little influence on the regio- and stereochemical outcomes and they possessed lower catalytic activity. Google Scholar 18In our preliminary investigations of a multisubstituted system, (Z)-2 i, which has no steric and electronic biases, the competitive formation of the SN2′ product 3 ai′ with high E selectivity was observed (see the following equation). For an addition/elimination pathway in the metal-catalyzed allylic substitution, see: H. Ohmiya, U. Yokoi, Y. Makida, M. Sawamura, J. Am. Chem. Soc. 2010, 132, 2895; Ref. [1e,h,j]. 10.1021/ja9109105 CASPubMedWeb of Science®Google Scholar 19An initial study into the application to 1,3,4-oxadiazole was successful (see the following equation). Attempts to apply the present copper catalytic systems to other acidic azoles such as benzoxazole, benzothiazole, and benzimidazole were unsuccessful (<2 % yield by gas chromatography analysis. Further optimization and details will be reported in due course. Google Scholar Citing Literature Volume123, Issue13March 21, 2011Pages 3046-3050 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation
Referência(s)