Artigo Acesso aberto Revisado por pares

Regulation of hepatocellular bile salt secretion: Who shoots the messengers

1996; Lippincott Williams & Wilkins; Volume: 24; Issue: 4 Linguagem: Inglês

10.1053/jhep.1996.v24.ajhep0240966

ISSN

1527-3350

Autores

J Crawford,

Tópico(s)

Pancreatitis Pathology and Treatment

Resumo

HepatologyVolume 24, Issue 4 p. 966-969 Hepatology ElsewhereFree Access Regulation of hepatocellular bile salt secretion: Who shoots the messengers J M Crawford, J M CrawfordSearch for more papers by this author J M Crawford, J M CrawfordSearch for more papers by this author First published: October 1996 https://doi.org/10.1002/hep.510240437Citations: 1AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Hardison WGM, Hatoff DE, Miyai D, Weiner RG. Nature of the bile acid maximum secretory rate in the rat. Am J Physiol 1981; 241: 337–343. CASPubMedWeb of Science®Google Scholar 2 Heuman DM. Hepatoprotective properties of ursodeoxycholic acid. Gastro-enterology 1993; 104: 1865–1870. 10.1016/0016-5085(93)90672-Y PubMedWeb of Science®Google Scholar 3 Crawford JM. The role of vesicle-mediated transport pathways in hepato-cellular bile secretion. Semin Liver Dis 1996; 16: 169–190. 10.1055/s-2007-1007230 PubMedWeb of Science®Google Scholar 4 Boyer JL, Soroka CJ. Vesicle targeting to the apical domain regulates bile excretory function in isolated rat hepatocyte couplets. Gastroenterology 1995; 109: 1600–1611. 10.1016/0016-5085(95)90649-5 CASPubMedWeb of Science®Google Scholar 5 Hubbard AL, Barr VA, Scott LJ. Hepatocyte surface polarity. In: IM Arias, JL Boyer, N Fausto, WB Jakoby, DA Schachter, DA Shafritz, eds. The liver: biology and pathobiology. New York: Raven, Ltd., 1994: 189–213. Google Scholar 6 Barroso M, Sztul ES. Basolateral to apical transcytosis in polarized cells is indirect and involves BFA and trimeric G protein sensitive passage through the apical endosome. J Cell Biol 1994; 124: 83–100. 10.1083/jcb.124.1.83 CASPubMedWeb of Science®Google Scholar 7 Nathanson MH, Boyer JL. Mechanisms and regulation of bile secretion. Hepatology 1991; 14: 551–566. 10.1002/hep.1840140324 CASPubMedWeb of Science®Google Scholar 8 Noé B, Schliess F, Wettstein M, Heinrich S, Häussinger D. Regulation of taurocholate excretion by a hypoosmolarity-activated signal transduction pathway in rat liver. Gastroenterology 1996; 110: 858–865. 10.1053/gast.1996.v110.pm8608896 CASPubMedWeb of Science®Google Scholar 9 Hallbrucker C, Lang F, Gerok W, Häussinger D. Cell swelling increases bile flow and taurocholate excretion into bile in isolated perfused rat liver. Biochem J 1992; 281: 593–595. 10.1042/bj2810593 CASPubMedWeb of Science®Google Scholar 10 Häussinger D. The role of cellular hydration in the regulation of cell function. Biochem J 1996; 313: 697–710. 10.1042/bj3130697 PubMedWeb of Science®Google Scholar 11 Burgoyne RD, Morgan A. Regulated exocytosis. Biochem J 1993; 293: 305–316. 10.1042/bj2930305 CASPubMedWeb of Science®Google Scholar 12 Bruck R, Nathanson MH, Roelofsen H, Boyer JL. Effects of protein kinase C and cytosolic Ca2+ on exocytosis in the isolated perfused rat liver. Hepatology 1994; 20: 1032–1040. 10.1002/hep.1840200436 CASPubMedWeb of Science®Google Scholar 13 Beuers U, Throckmorton DC, Anderson MS, Isales CM, Thasler W, Kullak-Ublick G-A, Sauter G, Koebe HG, Paumgartner G, Boyer JL. Taurourso-deoxycholic acid activates protein kinase C in isolated rat hepatocytes. Gastroenterology 1996; 110: 1553–1563. 10.1053/gast.1996.v110.pm8613063 CASPubMedWeb of Science®Google Scholar 14 Bouscarel B, Fromm H, Nussbaum R. Ursodeoxycholate mobilizes intracel-lular Ca2+ and activates phosphorylase α in isolated hepatocytes. Am J Physiol 1993; 264: 243–251. 10.1152/ajpgi.1993.264.2.G243 CASPubMedWeb of Science®Google Scholar 15 Beuers U, Nathanson MH, Boyer JL. Effects of tauroursodeoxycholic acid on cytosolic Ca2+ signals in isolated rat hepatocytes. Gastroenterology 1993; 104: 604–612. 10.1016/0016-5085(93)90433-D CASPubMedWeb of Science®Google Scholar 16 Beuers U, Nathanson MH, Isales CM, Boyer JL. Tauroursodeoxycholic acid stimulates hepatocellular exocytosis and mobilizes extracellular Ca++ mechanisms defective in cholestasis. J Clin Invest 1993; 92: 2984–2993. 10.1172/JCI116921 CASPubMedWeb of Science®Google Scholar 17 Hug H, Sarre TF. Protein kinase C isozymes: divergence in signal transduction? Biochem J 1993; 291: 329–348. 10.1042/bj2910329 CASPubMedWeb of Science®Google Scholar 18 Bell RM. Protein kinase C activation by diacylglycerol second messengers. Cell 1986; 45: 631–632. 10.1016/0092-8674(86)90774-9 PubMedWeb of Science®Google Scholar 19 Crawford JM, Mǒckel G-M, Crawford AR, Hagen SJ, Hatch VC, Barnes S, Godleski JJ. et al. Imaging biliary lipid secretion in the rat: ultrastructural evidence for vesiculation of the hepatocyte canalicular membrane. J Lipid Res 1995; 36: 2147–2163. 10.1016/S0022-2275(20)39199-9 CASPubMedWeb of Science®Google Scholar 20 Carey MC, Duane WC. Enterohepatic circulation. In: IM Arias, JL Boyer, N Fausto, WB Jakoby, D Schachter, DA Schafritz, eds. The liver: biology and pathobiology. New York: Raven, 1994: 719–767. Google Scholar 21 Bouscarel B, Gettys TW, Fromm H, Dubner H. Ursodeoxycholic acid inhibits glucagon-induced cAMP formation in hamster hepatocytes: a role for PKC. Am J Physiol 1995; 268: 300–310. CASPubMedWeb of Science®Google Scholar 22 Bouscarel B, Ceryak S, Gettys TW, Fromm H, Noonan F. Alteration of cAMP-mediated hormonal responsiveness by bile acids in cells of nonhe-patic origin. Am J Physiol 1995; 286: 908–916. Google Scholar 23 Burgstahler AD, Nathanson MH. NO modulates the apicolateral cytoskel-eton of isolated hepatocytes by a PKC-dependent, cGMP-in dependent mechanism. Am J Physiol 1995; 269: 789–799. 10.1152/ajpgi.1995.269.5.G789 CASPubMedWeb of Science®Google Scholar 24 Helms JB. Role of heterotrimeric GTP binding proteins in vesicular protein transport: indications for both classical and alternative G protein cycles. FEBS Lett 1995; 369: 84–88. 10.1016/0014-5793(95)00620-O CASPubMedWeb of Science®Google Scholar 25 Rothman JE. The protein machinery of vesicle budding and fusion. Protein Sci 1996; 5: 185–194. 10.1002/pro.5560050201 CASPubMedWeb of Science®Google Scholar 26 Marks DL, LaRusso NF, McNiven MA. Isolation of the microtubule-vesicle motor kinesin from rat liver: selective inhibition by cholestatic bile acids. Gastroenterology 1995; 108: 824–833. 10.1016/0016-5085(95)90457-3 CASPubMedWeb of Science®Google Scholar 27 Mandelkow E, Mandelkow E-M. Microtubules and microtubule-associated proteins. Curr Opin Cell Biol 1995; 7: 72–81. 10.1016/0955-0674(95)80047-6 CASPubMedWeb of Science®Google Scholar Citing Literature Volume24, Issue4October 1996Pages 966-969 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX