Outro Acesso aberto

References

2001; Wiley; Linguagem: Inglês

10.1002/9780470317075.refs

ISSN

1940-6347

Autores

Jiří Anděl,

Tópico(s)

Data Management and Algorithms

Resumo

Free Access References Jiří Anděl, Charles University Czech RepublicSearch for more papers by this author Book Author(s):Jiří Anděl, Charles University Czech RepublicSearch for more papers by this author First published: 22 January 2001 https://doi.org/10.1002/9780470317075.refsBook Series:Wiley Series in Probability and Statistics AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinked InRedditWechat References Anděl, J. (1978). Mathematical Statistics (in Czech). SNTL/ALFA, Prague. Google Scholar Anděl, J. (1985/86). How to find a straight line going through several points (in Czech). Rozhledy matematicko fyzikální 64: 185– 190. Google Scholar Anděl, J. (1988a). To command, or to vote? (in Czech). Věda a technika mládeži XLII (10): 30– 32. Google Scholar Anděl, J. (1988b). Why the records are so rare (in Czech). Věda a technika mládeži XLII (4): 28– 32. Google Scholar Anděl, J. (1988c). Dice and transitivity (in Czech). Rozhledy matematicko fyzikální 67: 309– 313. Google Scholar Anděl, J. (1990). Report on a business trip abroad (in Czech). Inform. Bull. Czech Statist. Soc. (3), 3. Google Scholar Anděl, J. (1990/91). Principle of reflection and reliability of service (in Czech). Rozhledy matematicko fyzikální 69: 54– 60. Google Scholar Anděl, J. (1991a). Christmas inequality. Inform. Bull. Czech Statist. Soc. (Engl. issue) 8– 10. Google Scholar Anděl, J. (1991b). Christmas inequality (in Czech). Inform. Bull. Czech Statist. Soc. (4), 1– 4. Google Scholar Anděl, J. (1993). How to win a million (in Czech). Inform. Bull. Czech Statist. Soc. (4), 1– 5. Google Scholar Anděl, J. and Zvára, K. (1980/81). On quadratic equations (in Czech). Rozhledy matematicko fyzikální, 59: 339– 344. Google Scholar Aškenazy, V. O. (1961). Application of Theory of Games in Military Problems (in Russian). Izd. Sovetskoje radio, Moscow. (A collection of translated English papers.). Google Scholar Austin, J. D. (1982). Overbooking airline flights. The Math. Teacher 75: 221– 223. Google Scholar Banjevic̀, D. (1991). Inequalities on the expectation and the variance of a function of a random variable. Unpublished manuscript. Google Scholar Banjevic̀, D., and Bratičevic̀, D. (1983). Note on dispersion of Xα. Publ. Inst. Math. (new series) 33 (47): 23– 28. Google Scholar Barlow, R. E., Hunter, L. C., and Proschan, F. (1963). Optimum redundancy, when components are subject to two kinds of failure. J. Soc. Indust. Appl. Math. 11: 64– 73. CrossrefWeb of Science®Google Scholar Bernardo, J. M., and Smith, A. F. M. (1994). Bayesian Theory. Wiley, New York. Wiley Online LibraryWeb of Science®Google Scholar Bernoulli, J. (1713). Ars Conjectandi. Reprinted in Die Werke von Jakob Bernoulli, Vol. 3 (1975), Birkhäuser, Basel. Google Scholar Bharucha-Reid, A. T., Sambandham, M. (1986). Random Polynomials. Academic Press, Orlando. Google Scholar Billingsley, P. (1986). Probability and Measure. Wiley, New York. Google Scholar Blom, G., Hoist, L., and Sandell, D. (1994). Problems and Snapshots from the World of Probability. Springer, New York. CrossrefGoogle Scholar Bloomfield, P. and Steiger, W.L. (1983). Least Absolute Deviations. Birkhäuser, Boston. Google Scholar Boas, R. P. (1981). Snowfall and elephants, pop bottles and π. The Math. Teacher 74: 49– 55. Google Scholar Boer, H. (1993). AIDS — welche Aussagekraft hat ein “positives” Test-Ergebnis? Stochastik in der Schule 13: 2– 12. Google Scholar Bühlmann, H. (1998). Mathematische Paradigmen in der Finanzwirtschaft. Elem. Math. 53: 159– 176. CrossrefGoogle Scholar Carroll, L. (1893). Pillow Problems. 4th ed. (1895), Problem 58, pp. 14,25, 83– 84; Google Scholar reprinted (in A Tangled Tale), Dover Publications, New York 1958. Google Scholar Chan, B. (1984). Moving on. The Actuary 18: 4– 5. Google Scholar Chan, W.-S. (1996). Mang kung dice game. Teaching Statist. 18: 42– 44. Wiley Online LibraryGoogle Scholar Coyle, C. A., and Wang, C. (1993). Wanna bet? On gambling strategies that may or may not work in a casino. Am. Statist. 47: 108– 111. Web of Science®Google Scholar Cramér, H. (1946). Mathematical Methods of Statistics. Princeton Univ. Press, Princeton, NJ. Google Scholar Croucher, J. S. (1985). Changing the rules of tennis: Who has the advantage? Teaching Statist. 7: 82– 84. Wiley Online LibraryGoogle Scholar Deshpande, M. N. (1992). A question on random variables. Teaching Statist., 14: 9. Wiley Online LibraryGoogle Scholar Dorfman, R. (1943). The detection of defective members of large populations. Ann. Math. Statist. 14: 436– 440. CrossrefGoogle Scholar Dubins, L. E., and Savage, L. (1965). Inequalities for Stochastic Processes: How to Gamble If You Must. Dover Publications, New York. Google Scholar Dupačová, J. (1982). Linear Programming (in Czech). SPN, Prague. Web of Science®Google Scholar Eisenberg, B., and Sullivan, R. (1996). Random triangles in n dimensions. Am. Math. Monthly 103: 308– 318. CrossrefWeb of Science®Google Scholar Engel, A. (1993). The computer solves the three tower problem. Am. Math. Monthly 100: 62– 64. CrossrefWeb of Science®Google Scholar Engel, J. (1996). Das Achensee-Paradoxon. Stochastik in der Schule 16: 3– 10. Google Scholar Everitt, B. S., (1999). Chance Rules. An Informal Guide to Probability, Risk, and Statistics. Copernikus, Springer, New York. Google Scholar Farahmand, K. (1991). Real zeros of random algebraic polynomials. Proc. Am. Math. Soc. 113: 1077– 1084. CrossrefWeb of Science®Google Scholar Feinerman, R. (1976). An ancient unfair game. Am. Math. Monthly 83: 623– 625. CrossrefWeb of Science®Google Scholar Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Vols. I and II. Wiley, New York. Google Scholar Ferguson, T. S., and Hardwick, J. P. (1989). Stopping rules for proofreading. J. Appl. Probab. 26: 304– 313. CrossrefWeb of Science®Google Scholar Field, D. A. (1978). Investigating mathematical models. Am. Math. Monthly 85: 196– 197. CrossrefWeb of Science®Google Scholar Fisher, R. A. (1934). Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh. Google Scholar Freeman, P. R. (1983). The secretary problem and its extensions: A review. Internal. Statist. Rev. 51: 189– 206. CrossrefWeb of Science®Google Scholar Gaver, D. P., and Powell, B. A. (1971). Variability in round-trip times for an elevator car during up-peak. Transportation Sci. 5: 169. CrossrefGoogle Scholar Glick, N. (1978). Breaking records and breaking boards. Am. Math. Monthly, 85: 2– 26. CrossrefWeb of Science®Google Scholar Glickman, L. (1991). Isaac Newton—the modern consultant. Teaching Statist. 13: 66– 67. Wiley Online LibraryGoogle Scholar Gordon, H. (1997). Discrete Probability. Springer, New York. CrossrefGoogle Scholar Gottinger, H. W. (1980). Elements of Statistical Analysis. De Gruyter, Berlin-New York. CrossrefGoogle Scholar Guy, R. K. (1993). There are three times as many obtuse-angled triangles as there are acute-angled ones. Math. Mag. 66: 175– 179. CrossrefGoogle Scholar Hader, R. J. (1967). Random roomate pairing of negro and white students. Am. Statist. 21 (5): 24– 26. Web of Science®Google Scholar Hájek, J., and Šidak, Z. (1967). Theory of Rank Tests. Academia, Prague. Google Scholar Hald, A. (1990). A History of Probability & Statistics and Their Applications Before 1750. Wiley, New York. Wiley Online LibraryGoogle Scholar Hall, G. R. (1982). Acute triangles in n-ball. J. Appl. Probab., 19: 712– 715. CrossrefWeb of Science®Google Scholar Hendricks, W. J. (1972). The stationary distribution of an interesting Markov chain. J. Appl. Probab. 9: 231– 233. CrossrefWeb of Science®Google Scholar Henningsen, J. (1984). An activity for predicting performances in the 1984 Summer Olympics. The Math. Teacher 77: 338– 341. Google Scholar Jaglom, A. M, Jaglom, I. M. (1954). Non-elementary problems in elementary presentation (in Russian). Gos. izd. techniko-teoretičeskoj literatury, Moscow. Google Scholar Karlin, S. (1959). Mathematical Methods and Theory in Games, Programming, and Economics. Pergamon Press, London. Google Scholar Kaucký, J. (1975). Combinatorial Identities (in Czech). Věda, Bratislava. Google Scholar Kendall, M. G., and Stuart, A. (1973). The Advanced Theory of Statistics II, 3rd ed. Griffin, London. Google Scholar Kirschenhofer, P., and Prodinger, H. (1994). The higher moments of the number of returns of a simple random walk. Adv. Appl. Probab. 26: 561– 563. CrossrefWeb of Science®Google Scholar Kolmogorov, A. N. (1950). Unbiased estimates (in Russian). Izv. Akad. Nauk SSSR, Ser. Mat. 14: 303– 326. Google Scholar Komenda, S. (1997). From a fairytale to a fairytale and then back or looking for Cinderella as object of managenent (in Czech). Preprint. Google Scholar Kulichová, J. (1994). Reliability of serial-paralel systems with two dual types of failures (in Czech). Diploma work Charles Univ., Prague. Google Scholar Lam, K., Leung, M.-Y., and Siu, M.-K. (1983). Self-organizing files. UMAP J. 4: 51– 84. Web of Science®Google Scholar Li, H. C. (1988). The exact probability that the roots of quadratic, cubic, and quartic equations are all real if the equation coefficients are random. Commun. Statist. - Th. Meth. 17: 395– 409. CrossrefWeb of Science®Google Scholar Liu, F. (1988). A note on probabilities in proofreading. Am. Math. Monthly 95: 854. CrossrefWeb of Science®Google Scholar Loève, M. (1955). Probability Theory. Van Nostrand, Princeton. Web of Science®Google Scholar Lozansky, E., and Rousseau, C. (1996). Winning Solutions. Springer, New York. CrossrefGoogle Scholar Ludvíkova, AJ. (1997). Georg Pick (1859–1942), life and main orientations of his activities (in Czech). Diploma work, Charles Univ. Web of Science®Google Scholar Mačák, K. (1997). Origins of the Probability Theory (in Czech). Prometheus, Prague. Google Scholar McKinsey, J. C. C. (1952). Introduction to the Theory of Games. McGraw-Hill, New York. Google Scholar Mead, R. (1992). Statistical games 2—medical diagnosis. Teaching Statist., 14: 12– 16. Wiley Online LibraryGoogle Scholar Meteorological Observations in Prague — Klementinum) (1976), Vols. I (1775–1900) and II (1901–1975) (in Czech). Institute of Hydrometeorology, Prague. Google Scholar Mishra, M. N., Nayak, N. N., Pattanayak, S. (1982). Strong result for real zeros of random polynomials. Pacific J. Math. 103: 502– 523. CrossrefGoogle Scholar Mishra, M. N., Nayak, N. N., Pattanayak, S. (1983). Lower bound for the number of real roots of a random algebraic polynomial. J. Austr. Math. Soc. A 35: 18– 27. CrossrefGoogle Scholar Moore, E. F., and Shannon, C. E. (1956). Reliable circuits using less reliable relays. J. Franklin Inst. 262: 191– 208, 281–297. CrossrefGoogle Scholar Mosteller, F. (1965). Fifty Challenging Problems in Probability with Solutions. Addison-Wesley, Reading, MA. Web of Science®Google Scholar Natanson, I. P. (1957). Theory of Functions of Real Variable (in Russian). Gos. izd. techniko-teor. lit., Moscow. Google Scholar Netuka, I. (1999). Georg Pick — mathematical colleague of Albert Einstein in Prague (in Czech). Pokroky matematiky, fyziky a astronomie 44: 227– 232. Google Scholar O'Brien, T. (1985). Fixed points and exam taking strategy. Am. Math. Monthly 92: 659– 661. CrossrefWeb of Science®Google Scholar Palacios, J. L. (1999). The ruin problem via electric networks. Am. Statist. 53: 67– 70. Web of Science®Google Scholar Pick, G. (1899). Geometrisches zurZahlenlehre. Sitzungs berichte des de utschen naturwissensc haftlich-medicinischen Vereines f. Böhmen “Lotos” 19 (47). Google Scholar Pinl, M, and Dick, A. (1974). Kollegen in einer dunklen Zeit. Schluß. Jber. Deutsch. Math.-Verein 75: 166– 208. Google Scholar Pólya, G. (1976). Probabilities in proofreading. Am. Math. Monthly 83: 42. CrossrefWeb of Science®Google Scholar Portnoy, S. (1994). A Lewis Carroll pillow problem: Probability of an obtuse triangle. Statist. Sci. 9: 279– 284. Web of Science®Google Scholar S. Rabinowitz (Ed.) (1992). Index to Mathematical Problems 1980–1984. MathPro Press, Westford, MA. Google Scholar Randall, K. (1984). Quick Mac attack. The Math. Teacher 77: 465, 487. Google Scholar Rao, C. R. (1973). Linear Statistical Inference and Its Applications, 2nd ed. Wiley, New York. Wiley Online LibraryGoogle Scholar Read, R. C. (1966). A type of “gambler's ruin” problem. Am. Math. Monthly 73: 177– 179. CrossrefWeb of Science®Google Scholar Rektorys, K. et al. (1995). Review of Applied Mathematics, 6th ed., Vols. I and II (in Czech). Prometheus, Prague. Google Scholar Rényi, A. (1962). Théorie des élements saillants d' une suite d'observations. Colloquium on Combinatorial Methods in Probability Theory, pp. 104– 117, Matematisk Institut, Aarhus Universitet, Denmark. Google Scholar Rényi, A. (1970). Probability Theory. Akadémiai Kiadó, Budapest. Google Scholar Rhodius, A. (1991). Zur Anwendung einiger Funktionalgleichungen in der Wahrscheinlichkeitsrechnung. Mathematik in der Schule 29: 793– 798. Google Scholar Ridenhour, J. R., and Woodward, E. (1984). The probability of winning in McDonald's Star Raiders contest. The Math. Teacher 77: 124– 128. Google Scholar Riordan, J. (1968). Combinatorial Identities. Wiley, New York. Google Scholar Rosen, M. I. (1995). Niels Hendrik Abel and equations of the fifth degree. Am. Math. Monthly 102: 495– 505. CrossrefWeb of Science®Google Scholar Ross, S. M. (1994). Comment to Christense, R., and Utts, J. 1992. ‘Bayes-ian resolution of the exchange paradox’, Amer. Statist. 47: 311, Google Scholar Amer. Statist. 48: 267. Google Scholar Rudin, W. (1974). Real and Complex Analysis. McGraw-Hill, New York. Google Scholar Sambandham, M., Thangarai, V., Bharucha-Reid, A. T. (1983). On the variance of the number of real roots of random algebraic polynomials. Stock Anal. Appl. 1: 215– 238. CrossrefWeb of Science®Google Scholar Sankaranarayanan, G. (1979). On the theory of random polynomials. Math. Student 47: 172– 192. Google Scholar Shenker, M. (1981). The mean number of real roots for one class of random polynomials. Ann. Prob. 9: 510– 512. CrossrefWeb of Science®Google Scholar Sierpiǹski, W. (1956). O rozwiazywaniu równaǹ w liczbach calkowitych. Paǹstwowe wydawnictwo naukowe, Warsaw. Google Scholar Smith, D. E. (1929). A Source Book in Mathematics. McGraw-Hill, New York (newed. 1959). Google Scholar Štěpán, J. (1987). Probability Theory (in Czech). Academia, Prague. Google Scholar Stigler, S. M. (1986). Laplace's 1774 memoir on inverse probability. Statist. Sci. 1: 359– 378. CrossrefGoogle Scholar Stirzaker, D. (1994). Elementary Probability. Cambridge Univ. Press, Cambridge, UK. Google Scholar Swift, J. (1983). Challenges for enriching the curriculum: Statistics and probability. The Math. Teacher 76: 268– 269. Google Scholar Székely, G. J. (1986). Paradoxes in Probability Theory and Mathematical Statistics. Akadémiai Kiadó, Budapest. CrossrefGoogle Scholar Tata, M. N. (1969). On outstanding values in a sequence of random variables. Z Wahrsch. Verw. Gebiete 12: 9– 20. CrossrefWeb of Science®Google Scholar Tucker, A. (1984). Applied Combinatorics. Wiley, New York. Google Scholar Valfiš, A. Z. (1952). Uravnenije Pellja. Izd. Akad. Nauk Gruzinskoj SSR, Tbilisi. Google Scholar Vervaat, W. (1973). Limit theorems for records from discrete distributions. Stochastic Process. Appl. 1: 317– 334. CrossrefGoogle Scholar Wang, C. (1993). Sense and Nonsense of Statistical Inference. Marcel Dekker, New York. Google Scholar Williams, J. D. (1954). The Compleat Strategyst Being a Primer on the Theory of Games of Strategy. McGraw-Hill, New York. Google Scholar Wolfram, S. (1991). Mathematica. Addison-Wesley, New York. Google Scholar Wong, E. (1964). A linear search problem. SIAM Rev. 6: 168– 174. CrossrefPubMedWeb of Science®Google Scholar Woolhouse, W. S. B. (1886). Solution by the proposer to problem 1350. In Mathematical Questions, with their Solutions from the Educational Times, Vol. 1, pp. 49– 51, C. F. Hodgson and Son, London. Google Scholar Mathematics of Chance ReferencesRelatedInformation

Referência(s)