Expression of Azurophil and specific granule proteins during differentiation of NB4 cells in neutrophils
1998; Wiley; Volume: 175; Issue: 2 Linguagem: Inglês
10.1002/(sici)1097-4652(199805)175
ISSN1097-4652
AutoresChristine Grégoire, Heidi C. E. Welch, Catherine Astarie‐Dequeker, Isabelle Maridonneau‐Parini,
Tópico(s)Cell Adhesion Molecules Research
ResumoJournal of Cellular PhysiologyVolume 175, Issue 2 p. 203-210 Expression of Azurophil and specific granule proteins during differentiation of NB4 cells in neutrophils Christine Grégoire, Christine Grégoire Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse, FranceSearch for more papers by this authorHeidi Welch, Heidi Welch Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse, FranceSearch for more papers by this authorCatherine Astarie-Dequeker, Catherine Astarie-Dequeker Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse, FranceSearch for more papers by this authorIsabelle Maridonneau-Parini, Corresponding Author Isabelle Maridonneau-Parini Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse, FranceInstitut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, UPR 9062, 205 route de Narbonne, 31077 Toulouse Cedex, FranceSearch for more papers by this author Christine Grégoire, Christine Grégoire Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse, FranceSearch for more papers by this authorHeidi Welch, Heidi Welch Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse, FranceSearch for more papers by this authorCatherine Astarie-Dequeker, Catherine Astarie-Dequeker Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse, FranceSearch for more papers by this authorIsabelle Maridonneau-Parini, Corresponding Author Isabelle Maridonneau-Parini Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse, FranceInstitut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, UPR 9062, 205 route de Narbonne, 31077 Toulouse Cedex, FranceSearch for more papers by this author First published: 06 December 1998 https://doi.org/10.1002/(SICI)1097-4652(199805)175:2 3.0.CO;2-9Citations: 20AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Neutrophils contain several populations of secretory granules with characteristic sets of proteins. Granule proteins are sorted into their respective granule types by temporal regulation of their expression during cell differentiation and/or by specific targeting signals. We investigated the expression of some granule proteins in human promyelocytic NB4 cells. Like other myeloid cell lines which can be differentiated into neutrophils, NB4 cells lack the specific-granule population. We report here that, nevertheless, they express the specific-granule matrix protein lactoferrin, when differentiated with retinoic acid. Lactoferrin and the azurophil-granule protein β-glucuronidase were simultaneously expressed, whereas myeloperoxidase expression had stopped, showing that azurophil-granule proteins are not all produced concomitantly. Cell fractionation by Percoll gradient revealed that while β-glucuronidase co-fractionated with myeloperoxidase, lactoferrin was mostly contained in a vesicular compartment free of markers for azurophil granules, plasma membrane, and Golgi. This vesicular compartment was not implicated in regulated exocytosis since it was not mobilized by secretagogues, which, in parallel, induced the release of myeloperoxidase. Furthermore, the specific granule-membrane protein cytochrome b558 also became expressed during NB4-cell differentiation. However, it did not co-localize with lactoferrin but was present in the plasma-membrane fraction. Therefore, differentiation of NB4 cells with retinoic acid leads to the expression of specific- and azurophil-granule proteins and provides a unique cell line model to study the mechanisms involved in the sorting of azurophil- and specific-granule proteins. J. Cell. Physiol. 175:203–210, 1998. © 1998 Wiley-Liss, Inc. Literature Cited Bainton, D. F., (1992) Developmental biology of neutrophils and eosinophils. In: Inflammation, Basic Principles and Clinical Correlates. J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds. Raven Press Ltd., New York, pp. 303–324. Web of Science®Google Scholar Borregaard, N., Heiple, J. M., Simons, E. R., and Clark, R. A., (1983) Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: translocation during activation. J. Cell Biol., 97: 52–61. 10.1083/jcb.97.1.52 CASPubMedWeb of Science®Google Scholar Borregaard, N., Lollike, K., Kjeldsen, L., Sengelov, H., Bastholm, L., Nielsen, M. H., and Bainton, D. F., (1993) Human neutrophil granules and secretory vesicles. Eur. J. Hematol., 15: 187–198. Google Scholar Dalton, W. T., Ahearn, M. J., McCrediek, K., Freidreich, E. J., Stass, S. T., and Trujillo, J. M., (1988) HL60 cell line was derived from a patient with FAB-M2 and not FAB-M3. Blood, 71: 242–247. PubMedWeb of Science®Google Scholar Egesten, A., Breton-Gorius, J., Guichard, J., Gullberg, U., and Olsson, I., (1994) The heterogeneity of azurophil granules in neutrophil promyelocytes: immunogold localization of myeloperoxidase, cathepsin G, elastase, proteinase 3 and bactericidal permeability increasing protein. Blood, 83: 2985–2994. CASPubMedWeb of Science®Google Scholar Gianni, M., Terao, M., Zanotta, S., Barbui, T., Rambaldi, A., and Garattini, E., (1994) Retinoic acid and granulocyte colony-stimulating factor synergistically induce leukocyte alkaline phosphatase in acute promyelocytic leukemia cells. Blood, 83: 1909–1921. CASPubMedWeb of Science®Google Scholar Goud, B., Zahraoui, A., Tavitian, A., and Saraste, J., (1990) Small GTP-binding protein associated with Golgi cisternae. Nature, 345: 553–556. 10.1038/345553a0 CASPubMedWeb of Science®Google Scholar Graubert, T., Johnston, J., and Berliner, N., (1993) Cloning and expression of the cDNA encoding mouse neutrophil gelatinase: demonstration of coordinate secondary granule protein gene expression during terminal neutrophil maturation. Blood, 82: 3192–3197. 10.1182/blood.V82.10.3192.3192 CASPubMedWeb of Science®Google Scholar Gullberg, U., Lindmark, A., Lindgren, G., Persson, A. M., Nisson, E., and Olsson, I., (1995) Carboxyl-terminal prodomain-deleted n leukocyte elastase and cathepsin G are efficiently targeted to granules and enzymatically activated in the rat basophilic/mast cell line RBL. J. Biol. Chem., 270: 12912–12918. 10.1074/jbc.270.21.12912 CASPubMedWeb of Science®Google Scholar Gullberg, U., Andersson, E., Garwicz, D., Lindmark, A., and Olsson, I., (1997) Biosynthesis, processing and sorting of neutrophil proteins: insights into neutrophil granule development. Eur. J. Haematol., 58: 137–153. 10.1111/j.1600-0609.1997.tb00940.x CASPubMedWeb of Science®Google Scholar Henson, P. M., Henson, J. E., Fittschen, C., Kimani, G., Bratton, D. L., and Riches, D. W. H., (1992) Degranulation and secretion by phagocytic cells. In: Inflammation, Basic Principles and Clinical Correlates. J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds. Raven Press Ltd., New York, pp. 363–390. Google Scholar Hirata, R. K., Chen, S.-T., and Weil, S. C., (1993) Expression of granule protein mRNAs in acute promyelocytic leukemia. Hematol. Pathol., 7: 225–238. CASPubMedWeb of Science®Google Scholar Hu, Z.-B., Ma, W., Uphoff, C. C., Lanotte, M., and Drexler, H. G., (1993) Modulation of gene expression in the acute promyelocytic leukemia cell line NB4. Leukemia, 7: 1817–1823. PubMedWeb of Science®Google Scholar Kornfeld, S., (1992) Structure and function of the mannose-6 phosphate insulin like growth factor II receptors. Annu. Rev. Biochem., 61: 307–330. 10.1146/annurev.bi.61.070192.001515 CASPubMedWeb of Science®Google Scholar Kornfeld, S., and Mellman, I., (1989) The biogenesis of lysosomes. Annu. Rev. Cell Biol., 5: 483–525. 10.1146/annurev.cb.05.110189.002411 CASPubMedWeb of Science®Google Scholar Khanna-Gupta, A., Kolibaba, K., Zibello, T. A., and Berliner, N., (1994) NB4 cells show bilineage potential and an aberrant pattern of neutrophil secondary granule protein gene expression. Blood, 84: 294–302. 10.1182/blood.V84.1.294.294 CASPubMedWeb of Science®Google Scholar Lanotte, M., Martin-Thouvenin, V., Najman, S., Balerini, P., Valensi, F., and Berger, R., (1991) NB4, a maturation inducible cell line with t(15:17) marker isolated from a huma, actute promyelocytic leukemia (M3) Blood, 77: 1080–1086. PubMedWeb of Science®Google Scholar Le Cabec, V., and Maridonneau-Parini, I., (1995) Complete and reversible inhibition of NADPH oxidase in human neutrophils by phenylarsine oxide at a step distal to membrane translocation of the enzyme subunits. J. Biol. Chem., 270: 2067–2073. 10.1074/jbc.270.5.2067 CASPubMedWeb of Science®Google Scholar Le Cabec, V., Cowland, J. B., Calafat, J., and Borregaard, N., (1996) Targeting of proteins to granule subsets is determined by timing and not by sorting: the specific granule protein NGAL is localized to azurophil granules when expressed in HL60 cells. Proc. Natl. Acad. Sci. U.S.A., 93: 6454–6457. 10.1073/pnas.93.13.6454 CASPubMedWeb of Science®Google Scholar Le Cabec, V., Calafat, J., and Borregaard, N., (1997) Sorting of the specific granule protein NGAL during granulocytic maturation of HL60 cells. Blood, 89: 2113–2121. CASPubMedWeb of Science®Google Scholar Lee, M.-O., Liu, Y., and Zhang, X.-K., (1995) A retinoic acid response element that overlaps an estrogen response element mediates multihormonal sensitivity in transcriptional activation of the lactoferrin gene. Mol. Cell. Biol., 15: 4194–4207. 10.1128/MCB.15.8.4194 CASPubMedWeb of Science®Google Scholar Liu, L., and Ganz, T., (1995) The pro region of human neutrophil defensin contains a motif that is essential for normal subcellular sorting. Blood, 85: 1095–1103. 10.1182/blood.V85.4.1095.bloodjournal8541095 CASPubMedWeb of Science®Google Scholar Maridonneau-Parini, I., and de Gunzburg, J., (1992) Association of rap1 and rap2 proteins with the specific granules of human neutrophils. Translocation to the plasma membrane during cell activation. J. Biol. Chem., 267: 6396–6402. CASPubMedWeb of Science®Google Scholar Maridonneau-Parini, I., Yang, C.-Z., Bornens, M., and Goud, B., (1991) Increase in the expression of a family of small guanosine triphosphate-binding proteins, Rab proteins, during induced phagocyte differentiation. J. Clin. Invest., 87: 901–907. 10.1172/JCI115096 CASPubMedWeb of Science®Google Scholar Möhn, H., Le Cabec, V., Fischer, S., and Maridonneau-Parini, I., (1995) The Src-family protein tyrosine kinase p59hck is located on the secretory granules in human neutrophils and translocates towards the phagosome during cell activation. Biochem. J., 309: 657–665. 10.1042/bj3090657 PubMedWeb of Science®Google Scholar N'Diaye, E. N., Vaissière, C., Gonzalez-Christen, J., Grégoire, C., Le Cabec, V., and Maridonneau-Parini, I., (1997) Expression of NADPH oxidase is induced by all-trans retinoic acid but not by phorbol myristate acetate and 1,25 dihydroxyvitamin D3 in the human promyelocytic cell line NB4. Leukemia (in press) Google Scholar Olsson, I., and Olofsson, T., (1981) Induction of differentiation in a human promyelocytic leukemic line (HL60) Exp. Cell Res., 131: 225–227. 10.1016/0014-4827(81)90422-5 CASPubMedWeb of Science®Google Scholar Olsson, I., Persson, A.-M., and Strömberg, K., (1984) Biosynthesis, transport and processing of myeloperoxidase in the human leukemic promyelocytic cell line HL60 and normal marrow cells. Biochem. J., 223: 911–920. 10.1042/bj2230911 CASPubMedWeb of Science®Google Scholar Olsson, I., Lantz, M., Persson, A. M., and Arnljots, K., (1988) Biosynthesis and processing of lactoferrin in bone marrow cells, a comparison with processing of myeloperoxidase. Blood, 71: 441–447. 10.1182/blood.V71.2.441.441 CASPubMedWeb of Science®Google Scholar Plutner, H., Cox, A. D., Pind, S., Khosravi-Far, R., Bourne, J. R., Der Schwaninger, C. J., and Balch, W. E., (1991) Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments. J. Cell Biol., 115: 31–43. 10.1083/jcb.115.1.31 CASPubMedWeb of Science®Google Scholar Rado, T. A., Bollekens, J., St. Laurent, G., Parker, L., and Benz, Jr E. J., (1984) Lactoferrin biosynthesis during granulocytopoiesis. Blood, 64: 1103–1109. 10.1182/blood.V64.5.1103.1103 CASPubMedWeb of Science®Google Scholar Ruchaud, S., Duprez, E., Gendron, M. C., Houge, G., Genieser, H. G., Jastorff, B., Doskeland, S. O., and Lanotte, M., (1994) Two distinctly regulated events, priming and triggering, during retinoid-induced maturation and resistance of NB4 promyelocytic leukemia cell line. Proc. Natl. Acad. Sci. U.S.A., 91: 8428–8432. 10.1073/pnas.91.18.8428 CASPubMedWeb of Science®Google Scholar Seale, I., Delva, L., Renesto, P., Balitrand, N., Dombret, H., Scrobohaci, M. L., Degos, L., Paul, P., and Chomienne, C., (1996) All-trans retinoic acid rapidly decreases cathepsin G synthesis and mRNA expression in acute promyelocytic leukemia. Leukemia, 10: 95–101. CASPubMedWeb of Science®Google Scholar Sengelov, H., Nielsen, M. H., and Borregaard, N., (1992) Separation of human neutrophil plasma membrane from intracellular vesicles containing alkaline phosphatase and NADPH oxidase activity by free flow electrophoresis. J. Biol. Chem., 267: 14912–14917. CASPubMedWeb of Science®Google Scholar Shipley, M. J., Grubb, J. H., and Sly, W. S., (1993) The role of glycosylation and phosphorylation in the expression of active human β-glucuronidase. J. Biol. Chem., 268: 12193–12198. CASPubMedWeb of Science®Google Scholar Tapiovaara, H., Matikainen, S., Hurme, M., and Vaheri, A., (1994) Induction of differentiation of promyelocytic NB4 cells by retinoic acid is associated with rapid increase in urokinase activity subsequently downregulated by production of inhibitors. Blood, 7: 1883–1891. Google Scholar Warrel, R. P., DeThe, H., Wang, Z.-Y., and Degos, L., (1993) Acute promyelocytic leukemia. N. Engl. J. Med., 329: 177–189. 10.1056/NEJM199307153290307 CASPubMedWeb of Science®Google Scholar Welch, H., and Maridonneau-Parini, I., (1997) Hck is activated by opsonized zymosan and A23187 in distinct subcellular fractions of human granulocytes. J. Biol. Chem., 272: 102–109. 10.1074/jbc.272.1.102 CASPubMedWeb of Science®Google Scholar Citing Literature Volume175, Issue2May 1998Pages 203-210 ReferencesRelatedInformation
Referência(s)