Artigo Revisado por pares

Supramolecular Ladders from Dimeric Cucurbit[6]uril

2013; Wiley; Volume: 125; Issue: 13 Linguagem: Romeno

10.1002/ange.201300404

ISSN

1521-3757

Autores

James B. Wittenberg, Peter Y. Zavalij, Lyle Isaacs,

Tópico(s)

Advanced NMR Techniques and Applications

Resumo

Angewandte ChemieVolume 125, Issue 13 p. 3778-3782 Zuschrift Supramolecular Ladders from Dimeric Cucurbit[6]uril† Dr. James B. Wittenberg, Dr. James B. Wittenberg Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 (USA)Search for more papers by this authorDr. Peter Y. Zavalij, Dr. Peter Y. Zavalij Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 (USA)Search for more papers by this authorProf. Dr. Lyle Isaacs, Corresponding Author Prof. Dr. Lyle Isaacs [email protected] Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 (USA)Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 (USA)===Search for more papers by this author Dr. James B. Wittenberg, Dr. James B. Wittenberg Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 (USA)Search for more papers by this authorDr. Peter Y. Zavalij, Dr. Peter Y. Zavalij Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 (USA)Search for more papers by this authorProf. Dr. Lyle Isaacs, Corresponding Author Prof. Dr. Lyle Isaacs [email protected] Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 (USA)Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 (USA)===Search for more papers by this author First published: 18 February 2013 https://doi.org/10.1002/ange.201300404Citations: 9 † We thank the National Science Foundation (CHE-1110911, to L.I.), the Department of Education (P200A090105, GAANN fellowship to J.B.W.), and the University of Maryland (University Fellowship to J.B.W.) for financial support. Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Cucurbit[6]uril-Dimere (verbrückte graue Zylinder; siehe Schema) wurden durch Kondensation von hexamerem Glycoluril mit geeigneten Tetraaldehyden erhalten. Ein Selbstorganisationsprozess dieser Dimere mit Oligoviologenen (blau) führt in Wasser zu supramolekularen Leiterstrukturen, die bezüglich ihrer Abmessungen und ihres Molekülgewichts typischen kleinen Proteinen entsprechen. Supporting Information As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Filename Description ange_201300404_sm_miscellaneous_information.pdf2.9 MB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1 1aW. A. Freeman, W. L. Mock, N.-Y. Shih, J. Am. Chem. Soc. 1981, 103, 7367–7368; 10.1021/ja00414a070 CASWeb of Science®Google Scholar 1bJ. Kim, I. S. Jung, S. Y. Kim, E. Lee, J. K. Kang, S. Sakamoto, K. Yamaguchi, K. Kim, J. Am. Chem. Soc. 2000, 122, 540–541; 10.1021/ja993376p CASWeb of Science®Google Scholar 1cA. Day, A. Arnold, R. Blanch, B. Snushall, J. Org. Chem. 2001, 66, 8094–8100; 10.1021/jo015897c CASPubMedWeb of Science®Google Scholar 1dA. I. Day, R. J. Blanch, A. P. Arnold, S. Lorenzo, G. R. Lewis, I. Dance, Angew. Chem. 2002, 114, 285–287; 10.1002/1521-3757(20020118)114:2 3.0.CO;2-6 Web of Science®Google ScholarAngew. Chem. Int. Ed. 2002, 41, 275–277; 10.1002/1521-3773(20020118)41:2 3.0.CO;2-M CASPubMedWeb of Science®Google Scholar 1eS. Liu, P. Y. Zavalij, L. Isaacs, J. Am. Chem. Soc. 2005, 127, 16798–16799. 10.1021/ja056287n CASPubMedWeb of Science®Google Scholar 2For leading reviews, see: Google Scholar 2aJ. Lee, S. Samal, N. Selvapalam, H. Kim, K. Kim, Acc. Chem. Res. 2003, 36, 621–630; 10.1021/ar020254k CASPubMedWeb of Science®Google Scholar 2bJ. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, Angew. Chem. 2005, 117, 4922–4949; 10.1002/ange.200460675 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 4844–4870; 10.1002/anie.200460675 CASPubMedWeb of Science®Google Scholar 2cW. M. Nau, M. Florea, K. I. Assaf, Isr. J. Chem. 2011, 51, 559–577; 10.1002/ijch.201100044 CASWeb of Science®Google Scholar 2dE. Masson, X. Ling, R. Joseph, L. Kyeremeh-Mensah, X. Lu, RSC Adv. 2012, 2, 1213–1247. 10.1039/C1RA00768H CASWeb of Science®Google Scholar 3 3aW. L. Mock, N.-Y. Shih, J. Org. Chem. 1986, 51, 4440–4446; 10.1021/jo00373a018 CASWeb of Science®Google Scholar 3bS. Liu, C. Ruspic, P. Mukhopadhyay, S. Chakrabarti, P. Y. Zavalij, L. Isaacs, J. Am. Chem. Soc. 2005, 127, 15959–15967; 10.1021/ja055013x CASPubMedWeb of Science®Google Scholar 3cM. V. Rekharsky, T. Mori, C. Yang, Y. H. Ko, N. Selvapalam, H. Kim, D. Sobransingh, A. E. Kaifer, S. Liu, L. Isaacs, W. Chen, S. Moghaddam, M. K. Gilson, K. Kim, Y. Inoue, Proc. Natl. Acad. Sci. USA 2007, 104, 20737–20742; 10.1073/pnas.0706407105 CASPubMedWeb of Science®Google Scholar 3dF. Biedermann, V. D. Uzunova, O. A. Scherman, W. M. Nau, A. De Simone, J. Am. Chem. Soc. 2012, 134, 15318–15323. 10.1021/ja303309e CASPubMedWeb of Science®Google Scholar 4A. Hennig, H. Bakirci, W. M. Nau, Nat. Methods 2007, 4, 629–632. 10.1038/nmeth1064 CASPubMedWeb of Science®Google Scholar 5D.-W. Lee, K. M. Park, M. Banerjee, S. H. Ha, T. Lee, K. Suh, P. Somak, H. Jung, J. Kim, N. Selvapalam, S. H. Ryu, K. Kim, Nat. Chem. 2011, 3, 154–159. 10.1038/nchem.928 CASPubMedWeb of Science®Google Scholar 6 6aE. Kim, D. Kim, H. Jung, J. Lee, S. Pail, N. Selvapalam, Y. Yang, N. Lim, C. G. Park, K. Kim, Angew. Chem. 2010, 122, 4507–4510; 10.1002/ange.201000818 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 4405–4408; 10.1002/anie.201000818 CASPubMedWeb of Science®Google Scholar 6bV. D. Uzunova, C. Cullinane, K. Brix, W. M. Nau, A. I. Day, Org. Biomol. Chem. 2010, 8, 2037–2042; 10.1039/b925555a CASPubMedWeb of Science®Google Scholar 6cS. Walker, R. Oun, F. J. McInnes, N. J. Wheate, Isr. J. Chem. 2011, 51, 616–624; 10.1002/ijch.201100033 CASWeb of Science®Google Scholar 6dJ. Zhang, R. J. Coulston, S. T. Jones, J. Geng, O. A. Scherman, C. Abell, Science 2012, 335, 690–694; 10.1126/science.1215416 CASPubMedWeb of Science®Google Scholar 6eD. Ma, G. Hettiarachchi, D. Nguyen, B. Zhang, J. B. Wittenberg, P. Y. Zavalij, V. Briken, L. Isaacs, Nat. Chem. 2012, 4, 503–510. 10.1038/nchem.1326 CASPubMedWeb of Science®Google Scholar 7 7aC. Kloeck, R. N. Dsouza, W. M. Nau, Org. Lett. 2009, 11, 2595–2598; 10.1021/ol900920p CASPubMedWeb of Science®Google Scholar 7bX. Lu, E. Masson, Org. Lett. 2010, 12, 2310–2313. 10.1021/ol100667z CASPubMedWeb of Science®Google Scholar 8 8aY. H. Ko, E. Kim, I. Hwang, K. Kim, Chem. Commun. 2007, 1305–1315; 10.1039/B615103E CASPubMedWeb of Science®Google Scholar 8bA. R. Urbach, V. Ramalingam, Isr. J. Chem. 2011, 51, 664–678; 10.1002/ijch.201100035 CASWeb of Science®Google Scholar 8cD. Das, O. A. Scherman, Isr. J. Chem. 2011, 51, 537–550; 10.1002/ijch.201100045 CASWeb of Science®Google Scholar 8dJ. F. Young, H. D. Nguyen, L. Yang, J. Huskens, P. Jonkheijm, L. Brunsveld, ChemBioChem 2010, 11, 180–183. 10.1002/cbic.200900599 CASPubMedWeb of Science®Google Scholar 9 9aW.-H. Huang, S. Liu, P. Y. Zavalij, L. Isaacs, J. Am. Chem. Soc. 2006, 128, 14744–14745; 10.1021/ja064776x CASPubMedWeb of Science®Google Scholar 9bS. Liu, A. D. Shukla, S. Gadde, B. D. Wagner, A. E. Kaifer, L. Isaacs, Angew. Chem. 2008, 120, 2697–2700; 10.1002/ange.200705346 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 2657–2660; 10.1002/anie.200705346 CASPubMedWeb of Science®Google Scholar 9cR. Nally, O. A. Scherman, L. Isaacs, Supramol. Chem. 2010, 22, 683–690; 10.1080/10610278.2010.497213 CASWeb of Science®Google Scholar 9dJ. B. Wittenberg, M. G. Costales, P. Y. Zavalij, L. Isaacs, Chem. Commun. 2011, 47, 9420–9422; 10.1039/c1cc13358f CASPubMedWeb of Science®Google Scholar 9eE. A. Appel, J. Dyson, J. del Barrio, L. Isaacs, O. A. Scherman, Chem. Sci. 2012, 3, 2278–2281. 10.1039/c2sc20285a CASWeb of Science®Google Scholar 10 10aD. Lucas, T. Minami, G. Iannuzzi, L. Cao, J. B. Wittenberg, P. Anzenbacher, Jr., L. Isaacs, J. Am. Chem. Soc. 2011, 133, 17966–17976; 10.1021/ja208229d CASPubMedWeb of Science®Google Scholar 10bN. Zhao, G. O. Lloyd, O. A. Scherman, Chem. Commun. 2012, 48, 3070–3072; 10.1039/c2cc17433b CASPubMedWeb of Science®Google Scholar 10cL. Cao, L. Isaacs, Org. Lett. 2012, 14, 3072–3075; 10.1021/ol3011425 CASPubMedWeb of Science®Google Scholar 10dFor perhydroxylation of CB[n] see: K. Kim, N. Selvapalam, Y. H. Ko, K. M. Park, D. Kim, J. Kim, Chem. Soc. Rev. 2007, 36, 267–279. 10.1039/B603088M CASPubMedWeb of Science®Google Scholar 11B. Vinciguerra, L. Cao, J. R. Cannon, P. Y. Zavalij, C. Fenselau, L. Isaacs, J. Am. Chem. Soc. 2012, 134, 13133–13140. 10.1021/ja3058502 CASPubMedWeb of Science®Google Scholar 12T. E. O. Screen, J. R. G. Thorne, R. G. Denning, D. G. Bucknall, H. L. Anderson, J. Am. Chem. Soc. 2002, 124, 9712–9713. 10.1021/ja026205k CASPubMedWeb of Science®Google Scholar 13 13aS. W. Leeming, R. M. Anemian, R. Williams, B. A. Brown (Merck, Germany), WO 2006125504A1, 2006, [Chem. Abstr. 2006, 146, 37413]; Google Scholar 13bT. Schrievers, U. H. Brinker, Synthesis 1988, 330–331. 10.1055/s-1988-27561 CASWeb of Science®Google Scholar 14CCDC 918840 (2) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Google Scholar 15 15aR. Taylor, O. Kennard, J. Am. Chem. Soc. 1982, 104, 5063–5070; 10.1021/ja00383a012 CASWeb of Science®Google Scholar 15bG. Desiraju, Acc. Chem. Res. 1991, 24, 290–296. 10.1021/ar00010a002 CASWeb of Science®Google Scholar 16D. Bardelang, K. A. Udachin, D. M. Leek, J. C. Margeson, G. Chan, C. I. Ratcliffe, J. A. Ripmeester, Cryst. Growth Des. 2011, 11, 5598–5614. 10.1021/cg201173j CASWeb of Science®Google Scholar 17Competitive binding experiments between 1, 6, and 15 (Supporting Information) establish that 6 and 15 bind with comparable strength to host 1. Accordingly, we expect that the terminal pyridinium-(CH2)6NH3+ and internal pyridinium-(CH2)6-pyridinium binding sites of 17 and 18 will bind with comparable affinity to 1. Google Scholar 18The design of 16–18 feature flexible (CH2)6 spacers connected by rigid viologens; upon complexation with CB[6] dimer 1 we expected that the (CH2)6 spacers would become rigidified, which would favor the formation of supramolecular ladders relative to supramolecular polymers. The insolubility of 1 and the poor solubility of the supramolecular ladders (approximately 10 mM) prevented an examination of the higher concentration regime where supramolecular polymers might be expected to become increasingly favorable. Google Scholar 19Y. Cohen, L. Avram, L. Frish, Angew. Chem. 2005, 117, 524–560; 10.1002/ange.200300637 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 520–544. 10.1002/anie.200300637 CASPubMedWeb of Science®Google Scholar 20If we use the common assumption that these assemblies can be treated as spheres of uniform density, then it is possible to equate the ratio of diffusion coefficients for two assemblies (DA/DB) to the ratio of the cube roots of the molecular weights of the species (MWB)1/3/(MWA)1/3. The Supporting Information contains a full derivation of this equation. Accordingly, for the case of assemblies 1⋅152 (MW=2857) and 12⋅162 (MW=5401) we predict 0.809, which is close to the experimental value of 0.787. Similarly, for the case of assemblies 1⋅152 (MW=2857) and 13⋅172 (MW=7389) we predict 0.729, which is very close to the experimental value of 0.732. For hypothetical assembly 14⋅182 (MW=9933), we would predict 0.660. We can use the experimentally determined diffusion coefficients for 1⋅152 and the 1+18 (4:2) assembly along with the molecular weight of 1⋅152 to estimate the average molecular weight of the mixture of assemblies formed from 1+18 (4:2; MW≈20169). Google Scholar Citing Literature Volume125, Issue13March 25, 2013Pages 3778-3782 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX