3-Dimensional

2017; Wolters Kluwer; Volume: 39; Issue: 12 Linguagem: Inglês

10.1097/01.cot.0000520999.84666.17

ISSN

1548-4688

Autores

George W. Sledge,

Tópico(s)

Media, Religion, Digital Communication

Resumo

Gutenberg Bible; cancer: Gutenberg Bible; cancerGeorge W. Sledge, Jr., MD: George W. Sledge, Jr., MD, is Professor of Medicine and Chief of the Division of Oncology at Stanford University. He also is Oncology Times' Editorial Board Chair. His OT writing experience has been recognized with an APEX Award for Publication Excellence and a FOLIO: Eddie Honorable Mention Award. Comment on this article and previous postings on his OT blog at bit.ly/OT-Sledge.In 1455, Johannes Gutenberg, a German blacksmith, published his version of the Bible. His first print run was not large—only 180 copies—but it changed the world. Prior to Gutenberg, and it is important to recognize this, there were few copies of anything. Great literary works from the ancient world might depend for their survival on some literate monk toiling away in a remote Alpine monastery. If the monk decides not to copy, say, a play by Sophocles (and we have only seven of his 123 plays), and the monastery suffers a fire, that play is gone. Gone forever. We know this happened frequently because we have the names of many of the missing works: Pliny the Elder's History of the German Wars, 107 of the 142 books that make up Livy's History of Rome, Aristarchus of Samos' astronomy book outlining (long before Copernicus) his heliocentrism theory. And then there is Suetonius' Lives of Famous Whores; no particular surprise that the monks passed on copying that. That all changed with Gutenberg. By the end of the 15th century, within the lifetime of someone born the same year as the printing press, it is estimated that 20 million manuscripts were in print, and over 200 European cities had printing presses in operation. A century later the number is 200 million manuscripts; by the 18th century, a billion have been printed. More books meant greater literacy. More books meant more controversy. Translate the Bible into German and publish it, as Martin Luther did, and you have the Protestant Reformation; when anyone can read the Bible, anyone can form an independent opinion and priesthoods lose their monopoly of specialized knowledge. Power dynamics change dramatically when the plebes can buy newspapers. Prior to Gutenberg, there are few scientists and they barely communicate; knowledge is arcane, hidden, and easily lost when the scientist dies. After Newton, scientists start publishing their work, in Latin for easy transmission, and the Scientific Revolution takes off. The world is suddenly a very different place, and all because Gutenberg combined moveable type with a wine press. And people changed as well. Or, more to the point, their brains change. Consider this recent experiment, conducted in India and published in Science Advances: take an illiterate 30-year-old rural Indian woman and teach her to read. Perform sophisticated brain imaging pre- and post-literacy. What does one see on the scans? Something quite interesting. The colliculi superiores, a part of the brainstem, and the pulvinar, located in the thalamus, change the timing of their activity patterns to those of the visual cortex. And the more closely aligned the timing of brainstem and thalamus, the better one reads. Don Quixote and Pride and Prejudice hijack something very old, something reptilian, in our brains. 2D-printing made population-wide literacy possible, but it also reprogrammed the brains of millions of people. Gutenberg lived in the German city of Mainz. If you were living in Mainz during Gutenberg's life, the big news was not the creation of the printing press. Instead, you would have been obsessed with the Mainz Diocesan Feud, a conflict over who would assume the throne of the Electorate of Mainz. Totally obscure today, the Diocesan feud resulted in the sack of Mainz by Adolph of Nassau (one of the contenders) and his troops. Gutenberg, by now an old man and failed businessman, was exiled along with 800 of his fellow citizens. He was one of the lucky ones: sacking a city rarely went well for its inhabitants, and hundreds of his fellow citizens were murdered. I imagine Gutenberg trudging out of his home town, just one among many refugees caught up in the bloody politics of his time. Was he thinking about the Diocesan feud, or was his mind leaping ahead to the revolution he created, to the billion books, to the free flow of information across a world hungry for knowledge? Adolph of Nassau, or Martin Luther and Isaac Newton? Today the verdict is easy: no one remembers Adolph of Nassau, and Gutenberg is one of civilization's greats. But it never looks that way when you are living through it. We rarely, in real time, understand what is important. Four centuries from now, I suspect the exploits of current potentates will fade, and what we will remember is the way science has transformed the world. Gutenberg was performing two-dimensional printing. Now we have 3D printing, and it is on everyone's short list of world-changing technologic advances. My old colleague Dr. Wikipedia defines 3D printing (AKA “additive manufacturing”) as “processes used to create a three-dimensional object in which layers of material are formed under computer control to create an object.” Basically, one creates a computer model (in what is called an STL file) of a 3-dimensional artifact. The STL file is then processed by software called a slicer—which does just what it sounds like—and converted into a series of thin layers. These layers are applied by a machine (the printer) repetitively. The layers themselves are now down to 100-micron resolution, a number that continues to drop. 3D printers have found their way into medicine, particularly with the development of cheap, individualized prosthetics: do a CT scan or MRI, use it as the template for the 3D printer, and roll out a prosthetic jaw or hip. After the 3D printer is paid for—and the price of these is collapsing—the prosthetic becomes quite inexpensive, developing world-cheap. Break a bone? You can now 3D print a personalized cast. Do you want a urologist to practice on “you” before the actual kidney surgery for a renal cell cancer? Perform a CT scan, 3D print the kidney model, and use it to plan surgery, minimizing normal tissue loss and preserving kidney function. But creating new knees or prepping for a difficult operation, as important as they may be, is just the beginning. 3D bioprinting is now coming along. And this is genuinely wonderful. Start with a gel or sugar matrix, layer mixtures of cells on the matrix in repetitive, sequential fashion, and before you know it you have a functioning organ. It's already been used to create cartilage for worn-out joints, synthetic bone filler to support bone regeneration, and patches of heart muscle to assist recovery after a heart attack. (For the last see this cool video of 3D-printed muscle: https://www.youtube.com/watch?v=4VqIiqZ-tkU&feature=youtu.be). While still mostly at the preclinical stage, biotech startups are beginning to get into the business, and clinical trials are not too far off. Regenerative medicine will be quite different for the next generation of doctors and patients. Do you have heart failure? Just order a new one using your own stem cells printed into a cardiac matrix. I've emphasized the medical aspects of 3D printing because, well, I'm a doctor. But 3D printing has so many uses, potential and real, that its only real limits are those of the human imagination. Suppose, for instance, you want to set up a human colony on the moon or Mars. A major barrier is the cost of moving things from here to there: a gravity well is not the space-travelers friend. You can't ship replacement parts for everything, and you can't even know what you will need 6 months from now. Things happen, unpredictable things that require some weird widget. But ship up a 3D printer along with the specs for just about any device, toss in some lunar dust, and you are in business. I'm not making this up: see Jakus, AE et al. Robust and Elastic Lunar and Martian Structures from 3D-Printed Regolith Inks. Scientific Reports 2017;7:44931. And remember how we stopped losing ancient books once Gutenberg came along? We live in a world where art survives at the mercy of religious fanatics armed with AK-47s. 3D printing is still fairly new, and the polymers being used are crude simulacra of the real thing, but we are probably not that far away from a day when every home can have an exact replica of the Mona Lisa on the wall, and where ISIS could no longer destroy Palmyra's Temple of Bel because there are a hundred identical copies scattered around the world. So maybe they aren't the same thing, exactly, but wouldn't it be wonderful to have the Met's Temple of Dendur in your back yard? Sound crazy? Large, industrial-scale 3D printers are already being used to make houses in China. I've described a fairly rosy picture for 3D printing: cheap knee replacements, smarter surgery, new hearts, better-equipped Moon colonies, my own copy of Monet. But there's another side as well. One of the iron laws of new technology is that it will always be used for purposes of porn and violence. 3D-printed sex toys—I'll leave the products to your imagination--are now available on the Internet. And 3D-printed firearms, essentially invisible to airport security, are available to any zealot with a 3D printer. Illegal in most localities, including the U.S., but when did that ever stop anyone? And would you want your teenage neighbor to have the 3D specs for a nuclear device? There are other social and economic implications. If I can download a file that allows my home 3D-printer to replicate the most sophisticated of devices at negligible cost, whole industries are at risk. As a teenager, I read a prescient science fiction story (you can still find it on the Web) called “Business as Usual During Alterations.” The story's premise was that aliens introduce technology allowing replication of virtually any product, in an attempt to destroy Earth's scarcity-based economy. This assault fails because the new technology, while eliminating the economies of scale underlying the 20th century industrial economy, unleashes human creativity and emphasizes diversity over uniformity. In the 21st century, we are the aliens, and the old industrial economy may well vanish, indeed is vanishing in front of our eyes. Already, for instance, there is a 3D shoe company in San Diego that produces individualized shoes—an exact fit, no more corns—on demand. It's reasonable to ask whether 2D and 3D printing bear any real relationship. One, after all, is all about words, the other about physical objects. But the written word and hand-made objects are both uniquely human constructs, claims for tool-making, quasi-talking animal relatives notwithstanding. And remember the illiterate Indian peasant woman? If 2D printing reprograms the brain, what will 3D printing do? We may soon find out. Imagine a continent—let's call it North America—where every kindergartner is taught 3D programming along with reading and writing. Will that child's brain function differently than yours or mine? I imagine our view of the spatial environment changing a great deal. Back to Gutenberg. The story has somewhat of a happy ending. Three years after the sack of Mainz, Adolph von Nassau allowed Gutenberg to return to Mainz. Gutenberg was given the title of Hofmann (gentleman of the court) along with appropriate court dress, a stipend, and 2,000 liters of wine. Perhaps our friend Johannes died a happy man, if not a sober one. Perhaps—and I hope that this is the case for at least some contemporary leaders as well—von Nassau was not a flaming narcissist and actually understood who was the real big deal in 15th century Mainz. But that may be a very two-dimensional, overly optimistic, way of looking at things.

Referência(s)
Altmetric
PlumX