A core group of structurally similar HLA-DPB1 alleles drives permissiveness after hematopoietic cell transplantation
2022; Elsevier BV; Volume: 140; Issue: 6 Linguagem: Inglês
10.1182/blood.2022015708
ISSN1528-0020
AutoresEsteban Arrieta‐Bolaños, Pietro Crivello, Meilun He, Tao Wang, Shahinaz M. Gadalla, Sophie Paczesny, Steven G. E. Marsh, Stephanie J. Lee, Stephen R. Spellman, Yung‐Tsi Bolon, Katharina Fleischhauer,
Tópico(s)T-cell and B-cell Immunology
ResumoLetter to Blood| August 11, 2022 A core group of structurally similar HLA-DPB1 alleles drives permissiveness after hematopoietic cell transplantation Esteban Arrieta-Bolaños, Esteban Arrieta-Bolaños Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany;German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Essen, Germany; https://orcid.org/0000-0002-3696-5803 Search for other works by this author on: This Site PubMed Google Scholar Pietro Crivello, Pietro Crivello Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany; https://orcid.org/0000-0001-9668-5013 Search for other works by this author on: This Site PubMed Google Scholar Meilun He, Meilun He CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN; Search for other works by this author on: This Site PubMed Google Scholar Tao Wang, Tao Wang Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI;CIBMTR (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, WI; https://orcid.org/0000-0002-2596-6843 Search for other works by this author on: This Site PubMed Google Scholar Shahinaz M. Gadalla, Shahinaz M. Gadalla Division of Cancer Epidemiology & Genetics, National Institutes of Health-National Cancer Institute Clinical Genetics Branch, Rockville, MD; https://orcid.org/0000-0002-3255-8143 Search for other works by this author on: This Site PubMed Google Scholar Sophie Paczesny, Sophie Paczesny Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC; https://orcid.org/0000-0001-5571-2775 Search for other works by this author on: This Site PubMed Google Scholar Steven G. E. Marsh, Steven G. E. Marsh Anthony Nolan Research Institute, London, United Kingdom;UCL Cancer Institute, Royal Free Campus, London, United Kingdom; Search for other works by this author on: This Site PubMed Google Scholar Stephanie J. Lee, Stephanie J. Lee CIBMTR (Center for International Blood and Marrow Transplant Research), Medical College of Wisconsin, Milwaukee, WI; andClinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA https://orcid.org/0000-0003-2600-6390 Search for other works by this author on: This Site PubMed Google Scholar Stephen R. Spellman, Stephen R. Spellman CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN; Search for other works by this author on: This Site PubMed Google Scholar Yung-Tsi Bolon, Yung-Tsi Bolon CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN; https://orcid.org/0000-0001-9414-6120 Search for other works by this author on: This Site PubMed Google Scholar Katharina Fleischhauer Katharina Fleischhauer Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany;German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Essen, Germany; https://orcid.org/0000-0002-5827-8000 Search for other works by this author on: This Site PubMed Google Scholar Blood (2022) 140 (6): 659–663. https://doi.org/10.1182/blood.2022015708 Article history Submitted: January 27, 2022 Accepted: May 12, 2022 First Edition: May 24, 2022 Share Icon Share Facebook Twitter LinkedIn MailTo Tools Icon Tools Request Permissions Cite Icon Cite Search Site Citation Esteban Arrieta-Bolaños, Pietro Crivello, Meilun He, Tao Wang, Shahinaz M. Gadalla, Sophie Paczesny, Steven G. E. Marsh, Stephanie J. Lee, Stephen R. Spellman, Yung-Tsi Bolon, Katharina Fleischhauer; A core group of structurally similar HLA-DPB1 alleles drives permissiveness after hematopoietic cell transplantation. Blood 2022; 140 (6): 659–663. doi: https://doi.org/10.1182/blood.2022015708 Download citation file: Ris (Zotero) Reference Manager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentAll JournalsBlood Search Subjects: Immunobiology and Immunotherapy, Transplantation TO THE EDITOR: Clinically tolerable, permissive HLA-DPB1 mismatches defined by the T-cell epitope (TCE) model improve the selection of unrelated donors in allogeneic hematopoietic cell transplantation (HCT).1 Nonpermissive mismatches across TCE groups have been shown to be associated with stronger alloreactive responses and worse clinical outcomes compared with permissive mismatches within the same TCE group.2-4 We have recently demonstrated that the biological basis of permissiveness is associated with the peptide repertoires (immunopeptidomes) presented by these molecules, which play a central role in determining the strength and T-cell receptor diversity of the alloreactive responses that they elicit.5 Less immunogenic HLA-DP molecules have similar bound peptide motifs6,7 and overlapping immunopeptidomes.5 Although the role of structural similarity and overlapping immunopeptidomes in vitro is clear,5 their relevance for alloresponses in vivo is still unknown. We hypothesized that a... REFERENCES 1.Dehn J, Spellman S, Hurley CK, et al. Selection of unrelated donors and cord blood units for hematopoietic cell transplantation: guidelines from the NMDP/CIBMTR. Blood. 2019;134(12):924-934.Google ScholarCrossrefSearch ADS PubMed 2.Fleischhauer K, Shaw BE, Gooley T, et al; International Histocompatibility Working Group in Hematopoietic Cell Transplantation. Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation: a retrospective study. Lancet Oncol. 2012;13(4):366-374.Google ScholarCrossrefSearch ADS PubMed 3.Pidala J, Lee SJ, Ahn KW, et al. Nonpermissive HLA-DPB1 mismatch increases mortality after myeloablative unrelated allogeneic hematopoietic cell transplantation. Blood. 2014;124(16):2596-2606.Google ScholarCrossrefSearch ADS PubMed 4.Arrieta-Bolaños E, Crivello P, Shaw BE, et al. In silico prediction of nonpermissive HLA-DPB1 mismatches in unrelated HCT by functional distance. Blood Adv. 2018;2(14):1773-1783.Google ScholarCrossrefSearch ADS PubMed 5.Meurer T, Crivello P, Metzing M, et al. Permissive HLA-DPB1 mismatches in HCT depend on immunopeptidome divergence and editing by HLA-DM. Blood. 2021;137(7):923-928.Google ScholarCrossrefSearch ADS PubMed 6.van Balen P, Kester MGD, de Klerk W, et al. Immunopeptidome analysis of HLA-DPB1 allelic variants reveals new functional hierarchies. J Immunol. 2020;204(12):3273-3282.Google ScholarCrossrefSearch ADS PubMed 7.Racle J, Michaux J, Rockinger GA, et al. Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nat Biotechnol. 2019;37(11):1283-1286.Google ScholarCrossrefSearch ADS PubMed 8.Crivello P, Zito L, Sizzano F, et al. The impact of amino acid variability on alloreactivity defines a functional distance predictive of permissive HLA-DPB1 mismatches in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2015;21(2):233-241.Google ScholarCrossrefSearch ADS PubMed 9.Zino E, Frumento G, Marktel S, et al. A T-cell epitope encoded by a subset of HLA-DPB1 alleles determines nonpermissive mismatches for hematologic stem cell transplantation. Blood. 2004;103(4): 1417-1424.Google ScholarCrossrefSearch ADS PubMed 10.Yamashita Y, Anczurowski M, Nakatsugawa M, et al. HLA-DP84Gly constitutively presents endogenous peptides generated by the class I antigen processing pathway. Nat Commun. 2017;8(1):15244.Google ScholarCrossrefSearch ADS PubMed 11.Díaz G, Amicosante M, Jaraquemada D, et al. Functional analysis of HLA-DP polymorphism: a crucial role for DPbeta residues 9, 11, 35, 55, 56, 69 and 84-87 in T cell allorecognition and peptide binding. Int Immunol. 2003;15(5):565-576.Google ScholarCrossrefSearch ADS PubMed 12.Petersdorf EW, Bengtsson M, De Santis D, et al; International Histocompatibility Working Group in Hematopoietic-Cell Transplantation. Role of HLA-DP expression in graft-versus-host disease after unrelated donor transplantation. J Clin Oncol. 2020; 38(24):2712-2718.Google ScholarCrossrefSearch ADS PubMed 13.Meurer T, Arrieta-Bolaños E, Metzing M, et al. Dissecting genetic control of HLA-DPB1 expression and its relation to structural mismatch models in hematopoietic stem cell transplantation. Front Immunol. 2018;9:2236.Google ScholarCrossrefSearch ADS PubMed 14.Schöne B, Bergmann S, Lang K, et al. Predicting an HLA-DPB1 expression marker based on standard DPB1 genotyping: linkage analysis of over 32,000 samples. Hum Immunol. 2018;79(1):20-27.Google ScholarCrossrefSearch ADS PubMed 15.Petersdorf EW, Malkki M, O’hUigin C, et al. High HLA-DP expression and graft-versus-host disease. N Engl J Med. 2015;373(7):599-609.Google ScholarCrossrefSearch ADS PubMed 16.Ruggeri A, De Wreede LC, Müller CR, et al. Integrating biological HLA-DPB1 mismatch models to predict survival after unrelated hematopoietic cell transplantation [published online ahead of print 12 May 2022]. Haematologica. doi: https://doi.org/10.3324/haematol.2021.280055.17.Morishima S, Shiina T, Suzuki S, et al; Japan Marrow Donor Program. Evolutionary basis of HLA-DPB1 alleles affects acute GVHD in unrelated donor stem cell transplantation. Blood. 2018;131(7):808-817.Google ScholarCrossrefSearch ADS PubMed 18.Malki MMA, Gendzekhadze K, Stiller T, et al. Protective effect of HLA-DPB1 mismatch remains valid in reduced-intensity conditioning unrelated donor hematopoietic cell transplantation [published online ahead of print 24 September 2019]. Bone Marrow Transplant. 2020;55(2):409–418. https://doi.org/10.1038/s41409-019-0694-y.CrossrefSearch ADS PubMed 19.Buhler S, Baldomero H, Ferrari-Lacraz S, et al; Swiss Blood Stem Cell Transplantation Group. Analysis of biological models to predict clinical outcomes based on HLA-DPB1 disparities in unrelated transplantation. Blood Adv. 2021;5(17):3377-3386.Google ScholarCrossrefSearch ADS PubMed 20.Lorentino F, Sacchi N, Oldani E, et al. Comparative evaluation of biological human leukocyte antigen DPB1 mismatch models for survival and graft-versus-host disease prediction after unrelated donor hematopoietic cell transplantation. Haematologica. 2020;105(4): e186-e189.Google ScholarCrossrefSearch ADS PubMed 21.Hurley CK, Kempenich J, Wadsworth K, et al. Common, intermediate and well-documented HLA alleles in world populations: CIWD version 3.0.0. HLA. 2020;95(6):516-531.Google ScholarCrossrefSearch ADS PubMed 22.Fuchs EJ, McCurdy SR, Solomon SR, et al. HLA informs risk predictions after haploidentical stem cell transplantation with post-transplantation cyclophosphamide. Blood. 2022;139(10):1452–1468. https://doi.org/10.1182/blood.2021013443CrossrefSearch ADS PubMed 23.Fleischhauer K. Haplo-PtCy: adjusting the HLA barrier. Blood. 2022;139(10):1431-1433.Google ScholarCrossrefSearch ADS PubMed © 2022 by The American Society of Hematology2022 © 2022 by The American Society of Hematology2022 You do not currently have access to this content. Sign in via your Institution
Referência(s)