Artigo Acesso aberto Revisado por pares

SARS-CoV-2 wastewater monitoring using a novel PCR-based method rapidly captured the Delta-to-Omicron ΒΑ.1 transition patterns in the absence of conventional surveillance evidence

2022; Elsevier BV; Volume: 844; Linguagem: Inglês

10.1016/j.scitotenv.2022.156932

ISSN

1879-1026

Autores

Taxiarchis Chassalevris, Serafeim C. Chaintoutis, Michalis Koureas, Maria Petala, Evangelia Moutou, Christina Beta, Maria Kyritsi, Christos Hadjichristodoulou, Margaritis Kostoglou, Thodoris D. Karapantsios, Agis M. Papadopoulos, Nikolaos Papaioannou, Chrysostomos Ι. Dovas,

Tópico(s)

Biosensors and Analytical Detection

Resumo

Conventional SARS-CoV-2 surveillance based on genotyping of clinical samples is characterized by challenges related to the available sequencing capacity, population sampling methodologies, and is time, labor, and resource-demanding. Wastewater-based variant surveillance constitutes a valuable supplementary practice, since it does not require extensive sampling, and provides information on virus prevalence in a timely and cost-effective manner. Consequently, we developed a sensitive real-time RT-PCR-based approach that exclusively amplifies and quantifies SARS-CoV-2 genomic regions carrying the S:Δ69/70 deletion, indicative of the Omicron BA.1 variant, in wastewater. The method was incorporated in the analysis of composite daily samples taken from the main Wastewater Treatment Plant of Thessaloniki, Greece, from 1 December 2021. The applicability of the methodology is dependent on the epidemiological situation. During Omicron BA.1 global emergence, Thessaloniki was experiencing a massive epidemic wave attributed solely to the Delta variant, according to genomic surveillance data. Since Delta does not possess the S:Δ69/70, the emergence of Omicron BA.1 could be monitored via the described methodology. Omicron BA.1 was detected in sewage samples on 19 December 2021 and a rapid increase of its viral load was observed in the following 10-day period, with an estimated early doubling time of 1.86 days. The proportion of the total SARS-CoV-2 load attributed to BA.1 reached 91.09 % on 7 January, revealing a fast Delta-to-Omicron transition pattern. The detection of Omicron BA.1 subclade in wastewater preceded the outburst of reported (presumable) Omicron cases in the city by approximately 7 days. The proposed wastewater surveillance approach based on selective PCR amplification of a genomic region carrying a deletion signature enabled rapid, real-time data acquisition on Omicron BA.1 prevalence and dynamics during the slow remission of the Delta wave. Timely provision of these results to State authorities readily influences the decision-making process for targeted public health interventions, including control measures, awareness, and preparedness.

Referência(s)