Artigo Acesso aberto Produção Nacional Revisado por pares

Supplementation of diet with Brazil nut modulates body composition, bone parameters, and lipid peroxidation in Wistar rats

2022; Wiley; Volume: 46; Issue: 10 Linguagem: Inglês

10.1111/jfbc.14294

ISSN

1745-4514

Autores

Nathália da Silva Costa, Patrícia Pereira Almeida, Beatriz Oliveira Da Cruz, Michele Lima Brito, Johnatas Maldonado‐Campos, Ágatha Cristie Menezes, Mariana Sarto Figueiredo, D’Angelo Carlo Magliano, Aline D’Ávila Pereira, Milena Barcza Stockler‐Pinto,

Tópico(s)

Diet and metabolism studies

Resumo

Journal of Food BiochemistryVolume 46, Issue 10 e14294 ORIGINAL ARTICLE Supplementation of diet with Brazil nut modulates body composition, bone parameters, and lipid peroxidation in Wistar rats Nathalia da Silva Costa, Corresponding Author Nathalia da Silva Costa [email protected] orcid.org/0000-0003-2660-1800 Cardiovascular Sciences Graduation Program, Fluminense Federal University (UFF), Niterói, Brazil Correspondence Nathalia da Silva Costa, Cardiovascular Sciences Graduation Program, Fluminense Federal University (UFF), Rua Mário Santos Braga 30, Niterói, RJ 24020-140, Brazil. Email: [email protected] Contribution: Conceptualization, Data curation, Formal analysis, ​Investigation, Visualization, Writing - original draft, Writing - review & editingSearch for more papers by this authorPatricia Pereira Almeida, Patricia Pereira Almeida Cardiovascular Sciences Graduation Program, Fluminense Federal University (UFF), Niterói, Brazil Contribution: Conceptualization, Data curation, Formal analysis, ​Investigation, Writing - review & editingSearch for more papers by this authorBeatriz Oliveira Da Cruz, Beatriz Oliveira Da Cruz orcid.org/0000-0002-3169-9315 Cardiovascular Sciences Graduation Program, Fluminense Federal University (UFF), Niterói, Brazil Contribution: Data curation, ​Investigation, Writing - review & editingSearch for more papers by this authorMichele Lima Brito, Michele Lima Brito Nutrition Graduation, Fluminense Federal University (UFF), Niterói, Brazil Contribution: ​Investigation, Writing - review & editingSearch for more papers by this authorJohnatas Maldonado-Campos, Johnatas Maldonado-Campos Biomedicine Graduation, Fluminense Federal University (UFF), Niterói, Brazil Contribution: ​Investigation, Writing - review & editingSearch for more papers by this authorAgatha Cristie Menezes, Agatha Cristie Menezes Cardiovascular Sciences Graduation Program, Fluminense Federal University (UFF), Niterói, Brazil Contribution: ​Investigation, Writing - review & editingSearch for more papers by this authorMariana Sarto Figueiredo, Mariana Sarto Figueiredo Nutrition Sciences Graduation Program, Fluminense Federal University (UFF), Niterói, Brazil Contribution: Resources, Writing - review & editingSearch for more papers by this authorD' Angelo Carlo Magliano, D' Angelo Carlo Magliano Cardiovascular Sciences Graduation Program, Fluminense Federal University (UFF), Niterói, Brazil Contribution: Methodology, Resources, Writing - review & editingSearch for more papers by this authorAline D'Avila Pereira, Aline D'Avila Pereira Nutrition Department, Vassouras University, Maricá, Brazil Contribution: Data curation, ​Investigation, Methodology, Writing - review & editingSearch for more papers by this authorMilena Barcza Stockler-Pinto, Milena Barcza Stockler-Pinto Cardiovascular Sciences Graduation Program, Fluminense Federal University (UFF), Niterói, Brazil Nutrition Sciences Graduation Program, Fluminense Federal University (UFF), Niterói, Brazil Contribution: Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Supervision, Visualization, Writing - review & editingSearch for more papers by this author Nathalia da Silva Costa, Corresponding Author Nathalia da Silva Costa [email protected] orcid.org/0000-0003-2660-1800 Cardiovascular Sciences Graduation Program, Fluminense Federal University (UFF), Niterói, Brazil Correspondence Nathalia da Silva Costa, Cardiovascular Sciences Graduation Program, Fluminense Federal University (UFF), Rua Mário Santos Braga 30, Niterói, RJ 24020-140, Brazil. Email: [email protected] Contribution: Conceptualization, Data curation, Formal analysis, ​Investigation, Visualization, Writing - original draft, Writing - review & editingSearch for more papers by this authorPatricia Pereira Almeida, Patricia Pereira Almeida Cardiovascular Sciences Graduation Program, Fluminense Federal University (UFF), Niterói, Brazil Contribution: Conceptualization, Data curation, Formal analysis, ​Investigation, Writing - review & editingSearch for more papers by this authorBeatriz Oliveira Da Cruz, Beatriz Oliveira Da Cruz orcid.org/0000-0002-3169-9315 Cardiovascular Sciences Graduation Program, Fluminense Federal University (UFF), Niterói, Brazil Contribution: Data curation, ​Investigation, Writing - review & editingSearch for more papers by this authorMichele Lima Brito, Michele Lima Brito Nutrition Graduation, Fluminense Federal University (UFF), Niterói, Brazil Contribution: ​Investigation, Writing - review & editingSearch for more papers by this authorJohnatas Maldonado-Campos, Johnatas Maldonado-Campos Biomedicine Graduation, Fluminense Federal University (UFF), Niterói, Brazil Contribution: ​Investigation, Writing - review & editingSearch for more papers by this authorAgatha Cristie Menezes, Agatha Cristie Menezes Cardiovascular Sciences Graduation Program, Fluminense Federal University (UFF), Niterói, Brazil Contribution: ​Investigation, Writing - review & editingSearch for more papers by this authorMariana Sarto Figueiredo, Mariana Sarto Figueiredo Nutrition Sciences Graduation Program, Fluminense Federal University (UFF), Niterói, Brazil Contribution: Resources, Writing - review & editingSearch for more papers by this authorD' Angelo Carlo Magliano, D' Angelo Carlo Magliano Cardiovascular Sciences Graduation Program, Fluminense Federal University (UFF), Niterói, Brazil Contribution: Methodology, Resources, Writing - review & editingSearch for more papers by this authorAline D'Avila Pereira, Aline D'Avila Pereira Nutrition Department, Vassouras University, Maricá, Brazil Contribution: Data curation, ​Investigation, Methodology, Writing - review & editingSearch for more papers by this authorMilena Barcza Stockler-Pinto, Milena Barcza Stockler-Pinto Cardiovascular Sciences Graduation Program, Fluminense Federal University (UFF), Niterói, Brazil Nutrition Sciences Graduation Program, Fluminense Federal University (UFF), Niterói, Brazil Contribution: Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Supervision, Visualization, Writing - review & editingSearch for more papers by this author First published: 28 June 2022 https://doi.org/10.1111/jfbc.14294Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Oxidative stress, adipose tissue, and bone compartments can be disturbed in chronic diseases. Non-pharmacological strategies, such as Brazil nuts (BNs), can improve these parameters. This study evaluated the effects of BN supplementation at different concentrations on body composition, lipid profile, and peroxidation in healthy rats. Male Wistar rats were divided into three groups: control (CT), Brazil nut 5% (BN5), and Brazil nut 10% (BN10) groups. Body composition, brown adipose tissue (BAT), plasma lipid peroxidation, and lipid profile were evaluated in the three groups. The BN5 group showed an improvement in all bone parameters compared with that of the CT group (p < .0001). The BN5 and BN10 groups showed reduced plasma lipid peroxidation compared with that of the CT group (p = .0009), whereas the BN10 group presented lower BAT lipid peroxidation than that of the other groups (p = .01). High-density lipoprotein-cholesterol (HDL-c) levels were higher in the BN5 group than in the CT group (p = .01). Conclusively, the use of BNs in a controlled manner promoted improvement in bone parameters, HDL-c levels, and lipid peroxidation in healthy rats. Practical applications Nuts has been included in the diet because of their versatility, acceptance, and easy access. Among them, Brazil nut (BN) is considered one of the major known food sources of selenium as well as a source of fibers, unsaturated fatty acids, and phenolic compounds. Studies have shown that BN supplementation is effective in reducing oxidative stress, inflammation, lipid peroxidation, and selenium deficiency when used as a non-pharmacological strategy in experimental models of chronic diseases and in clinical trials. The present study showed that controlled administration of BN improved bone parameters, high-density lipoprotein-cholesterol levels, and lipid peroxidation in healthy rats. Therefore, BN is a promising non-pharmacological agent for the prevention of the onset of chronic non-communicable diseases. CONFLICT OF INTEREST The authors declare that no conflict of interest could be perceived as influencing impartiality of the reported data. Open Research DATA AVAILABILITY STATEMENT The data that support the findings of this study are available from the corresponding author upon reasonable request. REFERENCES Agidigbi, T. S., & Kim, C. (2019). Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases. International Journal of Molecular Sciences, 20(14), 3576. https://doi.org/10.3390/ijms20143576 Alexandre-Santos, B. F. V. S., Magliano, D. C., & Frantz, E. D. C. (2018). The use of quantitative and qualitative approach to evaluate fat distribution and morphology in white adipose tissue. Acta Scientiae Anatomica, 1(1), 69–76. Almeida, P. P., Thomasi, B. B. M., Costa, N. S., Valdetaro, L., Pereira, A. D., Gomes, A. L. T., & Stockler-Pinto, M. B. (2020). Brazil nut (Bertholletia excelsa H.B.K) retards gastric emptying and modulates enteric glial cells in a dose-dependent manner. Journal of the American Nutrition Association, 41(2), 157–165. https://doi.org/10.1080/07315724.2020.1852981 Anselmo, N. A., Paskakulis, L. C., Garcias, R. C., Botelho, F. F. R., Toledo, G. Q., Cury, M. F. R., Carvalho, N. Z., Mendes, G. E. F., Iembo, T., Bizotto, T. S. G., Cury, P. M., Chies, A. B., & Carlos, C. P. (2018). Prior intake of Brazil nuts attenuates renal injury induced by ischemia and reperfusion. Jornal Brasileiro de Nefrologia, 40(1), 10–17. https://doi.org/10.1590/1678-46a85-JBN-3819 Azizieh, F. Y., Shehab, D., Jarallah, K. A., Gupta, R., & Raghupathy, R. (2019). Circulatory levels of RANKL, OPG, and oxidative stress markers in postmenopausal women with Normal or low bone mineral density. Biomarker Insights, 14, 1177271919843825. https://doi.org/10.1177/1177271919843825 Baghbani-Oskouei, A., Tohidi, M., Asgari, S., Ramezankhani, A., Azizi, F., & Hadaegh, F. (2018). Serum lipids during 20 years in the Tehran lipid and glucose study: Prevalence, trends and impact on non-communicable diseases. International Journal of Endocrinology and Metabolism, 16(4 Suppl), e84750. https://doi.org/10.5812/ijem.84750 Balakrishnan, J., Dhavamani, S., Sadasivam, S. G., Arumugam, M., Vellaikumar, S., Ramalingam, J., & Shanmugam, K. (2019). Omega-3-rich Isochrysis sp. biomass enhances brain docosahexaenoic acid levels and improves serum lipid profile and antioxidant status in Wistar rats. Journal of the Science of Food and Agriculture, 99(13), 6066–6075. https://doi.org/10.1002/jsfa.9884 Barbosa-da-Silva, S., Fraulob-Aquino, J. C., Lopes, J. R., Mandarim-de-Lacerda, C. A., & Aguila, M. B. (2012). Weight cycling enhances adipose tissue inflammatory responses in male mice. PLoS One, 7(7), e39837. https://doi.org/10.1371/journal.pone.0039837 Bernardis, L. L., & Patterson, B. D. (1968). Correlation between 'Lee index' and carcass fat content in weanling and adult female rats with hypothalamic lesions. The Journal of Endocrinology, 40(4), 527–528. https://doi.org/10.1677/joe.0.0400527 Beukhof, C. M., Medici, M., van den Beld, A. W., Hollenbach, B., Hoeg, A., Visser, W. E., de Herder, W. W., Visser, T. J., Schomburg, L., & Peeters, R. P. (2016). Selenium status is positively associated with bone mineral density in healthy aging European men. PLoS One, 11(4), e0152748. https://doi.org/10.1371/journal.pone.0152748 Bodnar, M., Szczyglowska, M., Konieczka, P., & Namiesnik, J. (2016). Methods of selenium supplementation: Bioavailability and determination of selenium compounds. Critical Reviews in Food Science and Nutrition, 56(1), 36–55. https://doi.org/10.1080/10408398.2012.709550 Brunetta, H. S., Politis-Barber, V., Petrick, H. L., Dennis, K., Kirsh, A. J., Barbeau, P. A., Nunes, E. A., & Holloway, G. P. (2020). Nitrate attenuates high fat diet-induced glucose intolerance in association with reduced epididymal adipose tissue inflammation and mitochondrial reactive oxygen species emission. The Journal of Physiology, 598(16), 3357–3371. https://doi.org/10.1113/JP279455 Campbell, J. A. (1963). Method for determination of PER and NPR. In FOOD and Nutrition Board (Ed.), Evaluation of protein quality (pp. 31–32). Committee on Protein Quality. Cardoso, B. R., Duarte, G. B. S., Reis, B. Z., & Cozzolino, S. M. F. (2017). Brazil nuts: Nutritional composition, health benefits and safety aspects. Food Research International, 100(Pt 2), 9–18. https://doi.org/10.1016/j.foodres.2017.08.036 Cardozo, L. F., Stockler-Pinto, M. B., & Mafra, D. (2016). Brazil nut consumption modulates Nrf2 expression in hemodialysis patients: A pilot study. Molecular Nutrition & Food Research, 60(7), 1719–1724. https://doi.org/10.1002/mnfr.201500658 Carracedo, M., Artiach, G., Arnardottir, H., & Back, M. (2019). The resolution of inflammation through omega-3 fatty acids in atherosclerosis, intimal hyperplasia, and vascular calcification. Seminars in Immunopathology, 41(6), 757–766. https://doi.org/10.1007/s00281-019-00767-y Carvalho, R. F., Huguenin, G. V., Luiz, R. R., Moreira, A. S., Oliveira, G. M., & Rosa, G. (2015). Intake of partially defatted Brazil nut flour reduces serum cholesterol in hypercholesterolemic patients—A randomized controlled trial. Nutrition Journal, 14, 59. https://doi.org/10.1186/s12937-015-0036-x Cavalcante Ribeiro, D., Alves da Silva, P. C., D'Avila Pereira, A., da Camara, F., Boueri, B., Ribeiro Pessanha, C., Coutinho, D., de Abreu, M., Saldanha Melo, H., Rozeno Pessoa, L., da Costa, C. A., & Boaventura, G. T. (2014). Assessments of body composition and bone parameters of lactating rats treated with diet containing flaxseed meal (Linum usitatissinum) during post-weaning period. Nutrición Hospitalaria, 30(2), 366–371. https://doi.org/10.3305/nh.2014.30.2.7602 Chen, F., Wang, Y., Wang, H., Dong, Z., Wang, Y., Zhang, M., Li, J., Shao, S., Yu, C., & Xu, J. (2019). Flaxseed oil ameliorated high-fat-diet-induced bone loss in rats by promoting osteoblastic function in rat primary osteoblasts. Nutrition & Metabolism (London), 16, 71. https://doi.org/10.1186/s12986-019-0393-0 Colpo, E., Vilanova, C. D., Brenner Reetz, L. G., Medeiros Frescura Duarte, M. M., Farias, I. L., Irineu Muller, E., Muller, A. L., Moraes Flores, E. M., Wagner, R., & Da Rocha, J. B. (2013). A single consumption of high amounts of the Brazil nuts improves lipid profile of healthy volunteers. Journal of Nutrition and Metabolism, 2013, 653185. https://doi.org/10.1155/2013/653185 Cominetti, C., de Bortoli, M. C., Garrido, A. B., Jr., & Cozzolino, S. M. (2012). Brazilian nut consumption improves selenium status and glutathione peroxidase activity and reduces atherogenic risk in obese women. Nutrition Research, 32(6), 403–407. https://doi.org/10.1016/j.nutres.2012.05.005 Costa, E. S. L. M., Pereira de Melo, M. L., Faro Reis, F. V., Monteiro, M. C., Dos Santos, S. M., Quadros Gomes, B. A., & Meller da Silva, L. H. (2019). Comparison of the effects of Brazil nut oil and soybean oil on the cardiometabolic parameters of patients with metabolic syndrome: A randomized trial. Nutrients, 12(1), 46. https://doi.org/10.3390/nu12010046 da Costa, C. A., da Silva, P. C., Ribeiro, D. C., Pereira, A. D., dos Santos Ade, S., de Abreu, M. D., Pessoa, L. R., Boueri, B. F., Pessanha, C. R., do Nascimento-Saba, C. C., da Silva, E. M., & Boaventura, G. T. (2016). Effects of diet containing flaxseed flour (Linum usitatissimum) on body adiposity and bone health in young male rats. Food & Function, 7(2), 698–703. https://doi.org/10.1039/c5fo01598g Di Daniele, N. (2019). The role of preventive nutrition in chronic non-communicable diseases. Nutrients, 11(5), 1074. https://doi.org/10.3390/nu11051074 Franzago, M., Santurbano, D., Vitacolonna, E., & Stuppia, L. (2020). Genes and diet in the prevention of chronic diseases in future generations. International Journal of Molecular Sciences, 21(7), 2633. https://doi.org/10.3390/ijms21072633 Frausto-Gonzalez, O., Bautista, C. J., Narvaez-Gonzalez, F., Hernandez-Leon, A., Estrada-Camarena, E., Rivero-Cruz, F., & Gonzalez-Trujano, M. E. (2021). Bertholletia excelsa seeds reduce anxiety-like behavior, lipids, and overweight in mice. Molecules, 26(11), 3212. https://doi.org/10.3390/molecules26113212 Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6), 499–502. Garcia-Vieyra, M. I., Del Real, A., & Lopez, M. G. (2014). Agave fructans: Their effect on mineral absorption and bone mineral content. Journal of Medicinal Food, 17(11), 1247–1255. https://doi.org/10.1089/jmf.2013.0137 Glickman, S. G., Marn, C. S., Supiano, M. A., & Dengel, D. R. (2004). Validity and reliability of dual-energy X-ray absorptiometry for the assessment of abdominal adiposity. Journal of Applied Physiology (Bethesda, MD: 1985), 97(2), 509–514. https://doi.org/10.1152/japplphysiol.01234.2003 Hoeg, A., Gogakos, A., Murphy, E., Mueller, S., Kohrle, J., Reid, D. M., Glüer, C. C., Felsenberg, D., Roux, C., Eastell, R., Schomburg, L., & Williams, G. R. (2012). Bone turnover and bone mineral density are independently related to selenium status in healthy euthyroid postmenopausal women. The Journal of Clinical Endocrinology and Metabolism, 97(11), 4061–4070. https://doi.org/10.1210/jc.2012-2121 Huang, X., Lv, Y., He, P., Wang, Z., Xiong, F., He, L., Zheng, X., Zhang, D., Cao, Q., & Tang, C. (2018). HDL impairs osteoclastogenesis and induces osteoclast apoptosis via upregulation of ABCG1 expression. Acta Biochim Biophys Sin (Shanghai), 50(9), 853–861. https://doi.org/10.1093/abbs/gmy081 Huguenin, G. V., Moreira, A. S., Siant'Pierre, T. D., Goncalves, R. A., Rosa, G., Oliveira, G. M., Luiz, R. R., & Tibirica, E. (2015). Effects of dietary supplementation with Brazil nuts on microvascular endothelial function in hypertensive and Dyslipidemic patients: A randomized crossover placebo-controlled trial. Microcirculation, 22(8), 687–699. https://doi.org/10.1111/micc.12225 Huguenin, G. V., Oliveira, G. M., Moreira, A. S., Saint'Pierre, T. D., Goncalves, R. A., Pinheiro-Mulder, A. R., Teodoro, A. J., Luiz, R. R., & Rosa, G. (2015). Improvement of antioxidant status after Brazil nut intake in hypertensive and dyslipidemic subjects. Nutrition Journal, 14, 54. https://doi.org/10.1186/s12937-015-0043-y Kang, I., Buckner, T., Shay, N. F., Gu, L., & Chung, S. (2016). Improvements in metabolic health with consumption of ellagic acid and subsequent conversion into urolithins: Evidence and mechanisms. Advances in Nutrition, 7(5), 961–972. https://doi.org/10.3945/an.116.012575 Kieliszek, M. (2019). Selenium(-)fascinating microelement, properties and sources in food. Molecules, 24(7), 1298. https://doi.org/10.3390/molecules24071298 Kontush, A. (2014). HDL-mediated mechanisms of protection in cardiovascular disease. Cardiovascular Research, 103(3), 341–349. https://doi.org/10.1093/cvr/cvu147 Kume, W. T., de Jesus Porto, E. P., de Lara Spada, E. C., Lisboa, D. R., Stachack, F. F. F., Terezo, A. J., Hernandes, T., Takeuchi, K. P., Dos Santos Elias, M. P., Gai, B. M., Kawashita, N. H., & de Franca Lemes, S. A. (2021). Acute supplementation of growing rats with Brazil nut flour increases hepatic lipid content but prevents oxidative damage in the liver. Journal of Food Biochemistry, e13834. https://doi.org/10.1111/jfbc.13834 La Russa, D., Marrone, A., Mandala, M., Macirella, R., & Pellegrino, D. (2020). Antioxidant/anti-inflammatory effects of caloric restriction in an aged and obese rat model: The role of adiponectin. Biomedicine, 8(12), 532. https://doi.org/10.3390/biomedicines8120532 Lee, J., Son, H. S., Lee, H. I., Lee, G. R., Jo, Y. J., Hong, S. E., Kim, N., Kwon, M., Kim, N. Y., Kim, H. J., Lee, Y. J., Seo, E. K., & Jeong, W. (2019). Skullcapflavone II inhibits osteoclastogenesis by regulating reactive oxygen species and attenuates the survival and resorption function of osteoclasts by modulating integrin signaling. The FASEB Journal, 33(2), 2026–2036. https://doi.org/10.1096/fj.201800866RR Lee, N. K., Choi, Y. G., Baik, J. Y., Han, S. Y., Jeong, D. W., Bae, Y. S., Kim, N., & Lee, S. Y. (2005). A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood, 106(3), 852–859. https://doi.org/10.1182/blood-2004-09-3662 Macan, T. P., de Amorim, T. A., Damiani, A. P., Beretta, A., Magenis, M. L., Vilela, T. C., Teixeira, J. P., & Andrade, V. M. (2020). Brazil nut prevents oxidative DNA damage in type 2 diabetes patients. Drug and Chemical Toxicology, 45(3), 1066–1072. https://doi.org/10.1080/01480545.2020.1808667 Mandarim-de-Lacerda, C. A., Fernandes-Santos, C., & Aguila, M. B. (2010). Image analysis and quantitative morphology. Methods in Molecular Biology, 611, 211–225. https://doi.org/10.1007/978-1-60327-345-9_17 Montes Chani, E. M., Pacheco, S. O. S., Martinez, G. A., Freitas, M. R., Ivona, J. G., Ivona, J. A., Craig, W. J., & Pacheco, F. J. (2018). Long-term dietary intake of chia seed is associated with increased bone mineral content and improved hepatic and intestinal morphology in Sprague-Dawley rats. Nutrients, 10(7), 922. https://doi.org/10.3390/nu10070922 Nadal-Casellas, A., Proenza, A. M., Gianotti, M., & Llad, I. (2011). Brown adipose tissue redox status in response to dietary-induced obesity-associated oxidative stress in male and female rats. Stress, 14(2), 174–184. https://doi.org/10.3109/10253890.2010.524681 NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. (2001). Osteoporosis prevention, diagnosis, and therapy. JAMA, 285(6), 785–795. https://doi.org/10.1001/jama.285.6.785 Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3 Papachristou, D. J., & Blair, H. C. (2016). Bone and high-density lipoprotein: The beginning of a beautiful friendship. World Journal of Orthopedics, 7(2), 74–77. https://doi.org/10.5312/wjo.v7.i2.74 Papachristou, N. I., Blair, H. C., Kypreos, K. E., & Papachristou, D. J. (2017). High-density lipoprotein (HDL) metabolism and bone mass. The Journal of Endocrinology, 233(2), R95–R107. https://doi.org/10.1530/JOE-16-0657 Peng, X. G., Zhao, Z., Chang, D., Bai, Y., Xu, Q., & Ju, S. (2020). Quantification of fat concentration and vascular response in Brown and White adipose tissue of rats by spectral CT imaging. Korean Journal of Radiology, 21(2), 248–256. https://doi.org/10.3348/kjr.2019.0111 Reeves, P. G., Nielsen, F. H., & Fahey, G. C., Jr. (1993). AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. The Journal of Nutrition, 123(11), 1939–1951. https://doi.org/10.1093/jn/123.11.1939 Ribeiro, D. C., Pereira, A. D., de Santana, F. C., Mancini-Filho, J., da Silva, E. M., da Costa, C. A., & Boaventura, G. T. (2017). Incorporation of flaxseed flour as a dietary source for ALA increases bone density and strength in post-partum female rats. Lipids, 52(4), 327–333. https://doi.org/10.1007/s11745-017-4245-2 Roberfroid, M. B., Cumps, J., & Devogelaer, J. P. (2002). Dietary chicory inulin increases whole-body bone mineral density in growing male rats. The Journal of Nutrition, 132(12), 3599–3602. https://doi.org/10.1093/jn/132.12.3599 Saldanha Melo, H., Monnerat, J. A. S., Costa, N. D. S., Bento Bernardes, T., Magliano, D. C., Pereira, A. D., Almeida, P. P., Lima, G. F., Ferreira de Brito, F. C., Stockler Pinto, M. B., Kindlovits, R., Nogueira, A. B., Sepúlveda-Fragoso, V., Nóbrega, A. C. L. D., Motta, N. A. V. D., & Medeiros, R. F. (2021). Impact of Brazil nut (Bertholletia excelsa, H.B.K.) supplementation on body composition, blood pressure, and the vascular reactivity of Wistar rats when submitted to a Hypersodium diet. Journal of the American College of Nutrition, 1–10. https://doi.org/10.1080/07315724.2021.1925995 Silva Figueiredo, P., Carla Inada, A., Marcelino, G., Maiara Lopes Cardozo, C., De Cassia Freitas, K., De Cassia Avellaneda Guimaraes, R., Pereira de Castro, A., Aragão do Nascimento, V., & Aiko Hiane, P. (2017). Fatty acids consumption: The role metabolic aspects involved in obesity and its associated disorders. Nutrients, 9(10), 1158. https://doi.org/10.3390/nu9101158 Stockler-Pinto, M. B., Lobo, J., Moraes, C., Leal, V. O., Farage, N. E., Rocha, A. V., Boaventura, G. T., Cozzolino, S. M., Malm, O., & Mafra, D. (2012). Effect of Brazil nut supplementation on plasma levels of selenium in hemodialysis patients: 12 months of follow-up. Journal of Renal Nutrition, 22(4), 434–439. https://doi.org/10.1053/j.jrn.2011.08.011 Stockler-Pinto, M. B., Mafra, D., Farage, N. E., Boaventura, G. T., & Cozzolino, S. M. (2010). Effect of Brazil nut supplementation on the blood levels of selenium and glutathione peroxidase in hemodialysis patients. Nutrition, 26(11–12), 1065–1069. https://doi.org/10.1016/j.nut.2009.08.006 Stockler-Pinto, M. B., Mafra, D., Moraes, C., Lobo, J., Boaventura, G. T., Farage, N. E., Silva, W. S., Cozzolino, S. F., & Malm, O. (2014). Brazil nut (Bertholletia excelsa, H.B.K.) improves oxidative stress and inflammation biomarkers in hemodialysis patients. Biological Trace Element Research, 158(1), 105–112. https://doi.org/10.1007/s12011-014-9904-z Stockler-Pinto, M. B., Malm, O., Moraes, C., Farage, N. E., Silva, W. S., Cozzolino, S. M., & Mafra, D. (2015). A follow-up study of the chronic kidney disease patients treated with Brazil nut: Focus on inflammation and oxidative stress. Biological Trace Element Research, 163(1–2), 67–72. https://doi.org/10.1007/s12011-014-0167-5 Stojanovic, A., Veselinovic, M., Draginic, N., Rankovic, M., Andjic, M., Bradic, J., Bolevich, S., Antovic, A., & Jakovljevic, V. (2021). The influence of menopause and inflammation on redox status and bone mineral density in patients with rheumatoid arthritis. Oxidative Medicine and Cellular Longevity, 2021, 9458587. https://doi.org/10.1155/2021/9458587 Taylor, B. A., & Phillips, S. J. (1996). Detection of obesity QTLs on mouse chromosomes 1 and 7 by selective DNA pooling. Genomics, 34(3), 389–398. https://doi.org/10.1006/geno.1996.0302 Tindall, A. M., Petersen, K. S., Lamendella, R., Shearer, G. C., Murray-Kolb, L. E., Proctor, D. N., & Kris-Etherton, P. M. (2018). Tree nut consumption and adipose tissue mass: Mechanisms of action. Current Developments in Nutrition, 2(11), nzy069. https://doi.org/10.1093/cdn/nzy069 Tourkova, I. L., Dobrowolski, S. F., Secunda, C., Zaidi, M., Papadimitriou-Olivgeri, I., Papachristou, D. J., & Blair, H. C. (2019). The high-density lipoprotein receptor Scarb1 is required for normal bone differentiation in vivo and in vitro. Laboratory Investigation, 99(12), 1850–1860. https://doi.org/10.1038/s41374-019-0311-0 Tsujio, M., Mizorogi, T., Kitamura, I., Maeda, Y., Nishijima, K., Kuwahara, S., Ohno, T., Niida, S., Nagaya, M., Saito, R., & Tanaka, S. (2009). Bone mineral analysis through dual energy X-ray absorptiometry in laboratory animals. The Journal of Veterinary Medical Science, 71(11), 1493–1497. https://doi.org/10.1292/jvms.001493 Villarroya, F., Iglesias, R., & Giralt, M. (2007). PPARs in the control of uncoupling proteins gene expression. PPAR Research, 2007, 74364. https://doi.org/10.1155/2007/74364 Wang, Y., Xie, D., Li, J., Long, H., Wu, J., Wu, Z., He, H., Wang, H., Yang, T., & Wang, Y. (2019). Association between dietary selenium intake and the prevalence of osteoporosis: A cross-sectional study. BMC Musculoskeletal Disorders, 20(1), 585. https://doi.org/10.1186/s12891-019-2958-5 WHO. (2018). Obesity and overweight. Fact Sheet Number: 311. http://www.who.int/news-room/fact-sheets/detail/healthy-diet Yamaguchi, Y., Kanzaki, H., Katsumata, Y., Itohiya, K., Fukaya, S., Miyamoto, Y., Narimiya, T., Wada, S., & Nakamura, Y. (2018). Dimethyl fumarate inhibits osteoclasts via attenuation of reactive oxygen species signalling by augmented antioxidation. Journal of Cellular and Molecular Medicine, 22(2), 1138–1147. https://doi.org/10.1111/jcmm.13367 Zeng, H., Cao, J. J., & Combs, G. F., Jr. (2013). Selenium in bone health: Roles in antioxidant protection and cell proliferation. Nutrients, 5(1), 97–110. https://doi.org/10.3390/nu5010097 Zhang, J., Munger, R. G., West, N. A., Cutler, D. R., Wengreen, H. J., & Corcoran, C. D. (2006). Antioxidant intake and risk of osteoporotic hip fracture in Utah: An effect modified by smoking status. American Journal of Epidemiology, 163(1), 9–17. https://doi.org/10.1093/aje/kwj005 Zhang, Z., Zhang, J., & Xiao, J. (2014). Selenoproteins and selenium status in bone physiology and pathology. Biochimica et Biophysica Acta, 1840(11), 3246–3256. https://doi.org/10.1016/j.bbagen.2014.08.001 Zolfaroli, I., Ortiz, E., Garcia-Perez, M. A., Hidalgo-Mora, J. J., Tarin, J. J., & Cano, A. (2021). Positive association of high-density lipoprotein cholesterol with lumbar and femoral neck bone mineral density in postmenopausal women. Maturitas, 147, 41–46. https://doi.org/10.1016/j.maturitas.2021.03.001 Volume46, Issue10October 2022e14294 ReferencesRelatedInformation

Referência(s)