Artigo Acesso aberto Revisado por pares

Magnesium- and intermetallic alloys-based hydrides for energy storage: modelling, synthesis and properties

2022; IOP Publishing; Volume: 4; Issue: 3 Linguagem: Inglês

10.1088/2516-1083/ac7190

ISSN

2516-1083

Autores

Luca Pasquini, Kouji Sakaki, Etsuo Akiba, Mark D. Allendorf, Ebert Alvares, J.R. Ares, Dotan Babai, Marcello Baricco, José M. Bellosta von Colbe, M. Bereznitsky, Craig E. Buckley, Young Whan Cho, Fermín Cuevas, Patricia de Rango, Erika Michela Dematteis, R.V. Denys, Martin Dornheim, J.F. Fernandez, Arif Hariyadi, Bjørn C. Hauback, Tae Wook Heo, Michael Hirscher, Terry D. Humphries, Jacques Huot, I. Jacob, Torben R. Jensen, Paul Jerabek, ShinYoung Kang, Nathan Keilbart, Hyunjeong Kim, M. Latroche, Fabrice Leardini, Haiwen Li, Sanliang Ling, Mykhaylo Lototskyy, Ryan Gotchy Mullen, Shin‐ichi Orimo, Mark Paskevicius, Claudio Pistidda, Marek Polański, Julián Puszkiel, Eugen Rabkin, Martin Sahlberg, Sabrina Sartori, Archa Santhosh, Toyoto Sato, Roni Z. Shneck, Magnus H. Sørby, Yuanyuan Shang, Vitalie Stavila, Jin‐Yoo Suh, Suwarno Suwarno, Thi Thu Le, Liwen F. Wan, C. J. Webb, Matthew Witman, Chubin Wan, Brandon C. Wood, V.A. Yartys,

Tópico(s)

Hybrid Renewable Energy Systems

Resumo

Abstract Hydrides based on magnesium and intermetallic compounds provide a viable solution to the challenge of energy storage from renewable sources, thanks to their ability to absorb and desorb hydrogen in a reversible way with a proper tuning of pressure and temperature conditions. Therefore, they are expected to play an important role in the clean energy transition and in the deployment of hydrogen as an efficient energy vector. This review, by experts of Task 40 ‘Energy Storage and Conversion based on Hydrogen’ of the Hydrogen Technology Collaboration Programme of the International Energy Agency, reports on the latest activities of the working group ‘Magnesium- and Intermetallic alloys-based Hydrides for Energy Storage’. The following topics are covered by the review: multiscale modelling of hydrides and hydrogen sorption mechanisms; synthesis and processing techniques; catalysts for hydrogen sorption in Mg; Mg-based nanostructures and new compounds; hydrides based on intermetallic TiFe alloys, high entropy alloys, Laves phases, and Pd-containing alloys. Finally, an outlook is presented on current worldwide investments and future research directions for hydrogen-based energy storage.

Referência(s)