Artigo Revisado por pares

Behavioral and physiological toxicity thresholds of a freshwater vertebrate (Heteropneustes fossilis) and invertebrate (Branchiura sowerbyi), exposed to zinc oxide nanoparticles (nZnO): A General Unified Threshold model of Survival (GUTS)

2022; Elsevier BV; Volume: 262; Linguagem: Inglês

10.1016/j.cbpc.2022.109450

ISSN

1878-1659

Autores

Shubhajit Saha, Azubuike V. Chukwuka, Dip Mukherjee, Kishore Dhara, Nimai Chandra Saha, Caterina Faggio,

Tópico(s)

Nanoparticles: synthesis and applications

Resumo

The toxic effects of Zinc oxide nanoparticles (nZnO) on Branchiura sowerbyi and Heteropneustes fossilis, was assessed in a 96-hour acute exposure regime using behavioral (including loss-of balance and clumping tendencies) and physiological (mucus secretion and oxygen consumption) endpoints. While the relationship between behavioral, physiological biomarkers, and exposure concentrations was assessed using correlation analysis, nZnO toxicity was further predicted using the General Unified Threshold model for Survival (GUTS). The time-dependent lethal limits for acute nZnO toxicity (LC50) on B. sowerbyi were estimated to be 0.668, 0.588, 0.448, and 0.400 mg/l, respectively, at 24, 48, 72, and 96 h whereas for H. fossilis the LC50 values are 0.954, 0.905, 0.874 and 0.838 mg/l. Threshold effect values i.e., LOEC (Lowest Observed Effect Concentration), NOEC (No Observed Effect Concentration), and MATC (Maximum Acceptable Toxicant Concentration) threshold effect values at 96 h were higher for fish compared to the oligochaete. For B. sowerbyi, the GUTS-SD (stochastic death) model is a better predictor of nanoparticle exposure effects compared to the GUTS-IT (individual tolerance) model, however in the case of H. fossilis, the reverse pattern was observed. Oxygen consumption rate was negatively correlated to mortality under acute exposure duration. The strong negative correlation between mortality and oxygen consumption strongly suggests a metabolic-toxicity pathway for nZnO exposure effects. The higher toxicity threshold values i.e., LOEC, NOEC, and MATC for fish compared to the oligochaete invertebrate indicates greater risks for invertebrates compared to vertebrates, with resultant implications for local habitat trophic relationships.

Referência(s)