Artigo Revisado por pares

Review of High-Power Electrostatic and Electrothermal Electric Propulsion

2022; American Institute of Aeronautics and Astronautics; Volume: 38; Issue: 6 Linguagem: Inglês

10.2514/1.b38594

ISSN

1533-3876

Autores

David R. Jovel, Mitchell L. R. Walker, Daniel A. Herman,

Tópico(s)

Cryptographic Implementations and Security

Resumo

No AccessSurvey PapersReview of High-Power Electrostatic and Electrothermal Electric PropulsionDavid R. Jovel, Mitchell L. R. Walker and Daniel HermanDavid R. JovelGeorgia Institute of Technology, Atlanta, Georgia 30332, Mitchell L. R. WalkerGeorgia Institute of Technology, Atlanta, Georgia 30332 and Daniel HermanNASA John H. Glenn Research Center, Cleveland, Ohio 44135Published Online:12 Sep 2022https://doi.org/10.2514/1.B38594SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Surampudi R., Blosiu J., Stella P., Elliott J., Castillo J., Yi T., Lyons J., Piszczor M., McNatt J., Taylor C., Gaddy E., Liu S., Plichta E., Iannello C., Beauchamp P. and Cutts J. A., "Solar Power Technologies for Future Planetary Science Missions," NASA/Jet Propulsion Lab. Rept. JPL D-101316, Dec. 2017. Google Scholar[2] Feuerborn S. A., Perkins J. and Neary D. A., "Finding a Way: Boeing's 'All Electric Propulsion Satellite'," 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2013-4126, 2013. https://doi.org/10.2514/6.2013-4126 LinkGoogle Scholar[3] Autric J.-M., Escourrou P. and Laine I., "Telecom Spacecraft Mission Design: Electric Orbit Raising for Airbus Communications Satellites," 2018 SpaceOps Conference, AIAA Paper 2018-2601, 2018. https://doi.org/10.2514/6.2018-2601 LinkGoogle Scholar[4] Johnson I., Santiago G., Li J. and Baldwin J., "100,000 hrs of On-Orbit Electric Propulsion and MAXAR's First Electric Orbit Raising," AIAA Scitech 2020 Forum, AIAA Paper 2020-0189, 2020. https://doi.org/10.2514/6.2020-0189 LinkGoogle Scholar[5] Nishi K., Ozawa S., Fukatsu T., Hatooka Y., Sano T., Nishijo K., Otani F. and Kohama T., "Conceptual Design of Japan's Engineering Test Satellite-9," 35th AIAA International Communications Satellite Systems Conference, AIAA Paper 2017-5427, 2017. https://doi.org/10.2514/6.2017-5427 Google Scholar[6] Jackson J., Miller S., Cassady J., Soendker E., Welander B., Barber M. and Peterson P., "13 kW Advanced Electric Propulsion Flight System Development and Qualification," 36th International Electric Propulsion Conference, IEPC Paper 2019-692, 2019. Google Scholar[7] Ticker R., Gates M., Manzella D., Biaggi-Labiosa A. and Lee T., "The Gateway Power and Propulsion Element: Setting the Foundation for Exploration and Commerce," AIAA Propulsion and Energy 2019 Forum, AIAA Paper 2019-3811, 2019. https://doi.org/10.2514/6.2019-3811 LinkGoogle Scholar[8] Herman D. A., Johnson T. G., Kerl I. T., Lee T. and Silva T., "The Application of Advanced Electric Propulsion on the NASA Power and Propulsion Element (PPE)," 36th International Electric Propulsion Conference, IEPC Paper 2019-651, 2019. Google Scholar[9] Giannetti V., Ferrato E., Piragino A., Reza M., Faraji F., Andrenucci M. and Andreussi T., "HT5k Thruster Unit Development History, Status and Way Forward," 36th International Electric Propulsion Conference, IEPC Paper 2019-878, 2019. Google Scholar[10] Duchemin O., Rabin J., Balika L., Diome M., Lonchard J.-M., Cavelan X., Boniface C. and Liénart T., "Development Status of the PPS®5000 Hall Thruster Unit," 35th International Electric Propulsion Conference, IEPC Paper 2017-415, 2017. Google Scholar[11] Piragino A., Leporini A., Giannetti V., Pedrini D., Rossodivita A., Andreussi T., Andrenucci M. and Estublier D., "Characterization of a 20 kW-Class Hall Effect Thruster," 35th International Electric Propulsion Conference, IEPC Paper 2017-381, 2017. Google Scholar[12] Luna J. P., Lewis R. A., Park N., Bosher J., Guarducci F. and Cannat F., "T7 Thruster Design and Performance," 36th International Electric Propulsion Conference, IEPC Paper 2019-356, 2019. Google Scholar[13] Leiter H.-J., Lauer D., Bauer P., Berger M. and Rath M., "The Ariane Group Electric Propulsion Program 2019-2020," 36th International Electric Propulsion Conference, IEPC Paper 2019-592, 2019. Google Scholar[14] Petro E. M. and Sedwick R. J., "Survey of Moderate-Power Electric Propulsion Systems," Journal of Spacecraft and Rockets, Vol. 54, No. 3, 2017, pp. 529–541. https://doi.org/10.2514/1.A33647 LinkGoogle Scholar[15] Wollenhaupt B., Le Q. H. and Herdrich G., "Overview of Thermal Arcjet Thruster Development," Aircraft Engineering and Aerospace Technology, Vol. 90, No. 2, 2018, pp. 280–301. https://doi.org/10.1108/AEAT-08-2016-0124 CrossrefGoogle Scholar[16] Lev D., Myers R. M., Lemmer K. M., Kolbeck J., Koizumi H. and Polzin K., "The Technological and Commercial Expansion of Electric Propulsion," Acta Astronautica, Vol. 159, June 2019, pp. 213–227. https://doi.org/10.1016/j.actaastro.2019.03.058 CrossrefGoogle Scholar[17] Dale E., Jorns B. and Gallimore A., "Future Directions for Electric Propulsion Research," Aerospace, Vol. 7, No. 9, 2020, Paper 120. https://doi.org/10.3390/aerospace7090120 Google Scholar[18] Jahn R. G., Physics of Electric Propulsion, Dover, Mineola, NY, 2006, Chap. 1. Google Scholar[19] Goebel D. M. and Katz I., Fundamentals of Electric Propulsion: Ion and Hall Thrusters, 1, Wiley, Hoboken, NJ, 2008, Chaps. 1–3. CrossrefGoogle Scholar[20] Kodys A. and Choueiri E. Y., "A Critical Review of the State-of-the-Art in the Performance of Applied-Field Magnetoplasmadynamic Thrusters," 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2005-4247, 2005. https://doi.org/10.2514/6.2005-4247 AbstractGoogle Scholar[21] Cong Y., Li Y., Wei Y., Zhou C., Ding F., Wang B., Wang L., Tian H., Yang N. and Sun K., "The Experimental Performances of the 100 kW MPD Thruster with Applied Magnetic Field," 36th International Electric Propulsion Conference, IEPC Paper 2019-310, 2019. Google Scholar[22] Boxberger A. and Herdrich G., "Integral Measurements of 100 kW Class Steady State Applied-Field Magnetoplasmadynamic Thruster SX3 and Perspectives of AF-MPD Technology," 35th International Electric Propulsion Conference, IEPC Paper 2017-339, 2017. Google Scholar[23] Ide S., Tsukizaki R., Nishiyama K. and Kuninaka H., "Performance of Applied Field MPD Thruster with Various Propellants," 36th International Electric Propulsion Conference, IEPC Paper 2019-A450, 2019. Google Scholar[24] Boxberger A., Behnke A. and Herdrich G., "Current Advances in Optimization of Operative Regimes of Steady State Applied Field MPD Thrusters," 36th International Electric Propulsion Conference, IEPC Paper 2019-585, 2019. Google Scholar[25] Ichihara D., Uno T., Kataoka H., Jeong J., Iwakawa A. and Sasoh A., "Ten-Ampere-Level, Applied-Field-Dominant Operation in Magnetoplasmadynamic Thrusters," Journal of Propulsion and Power, Vol. 33, No. 2, 2017, pp. 360–369. https://doi.org/10.2514/1.B36179 LinkGoogle Scholar[26] Dailey C. L. and Lovberg R. H., "The PIT MkV Pulsed Inductive Thruster," NASA CR-191155, July 1993. Google Scholar[27] Polzin K., Martin A., Little J., Promislow C., Jorns B. and Woods J., "State-of-the-Art and Advancement Paths for Inductive Pulsed Plasma Thrusters," Aerospace, Vol. 7, No. 8, 2020, Paper 105. https://doi.org/10.3390/aerospace7080105 Google Scholar[28] Polzin K. A., "Comprehensive Review of Planar Pulsed Inductive Plasma Thruster Research and Technology," Journal of Propulsion and Power, Vol. 27, No. 3, 2011, pp. 513–531. https://doi.org/10.2514/1.B34188 LinkGoogle Scholar[29] Dankanich J. and Polzin K., "Mission Assessment of the Faraday Accelerator with Radio-Frequency Assisted Discharge (FARAD)," 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2008-4517, 2008. https://doi.org/10.2514/6.2008-4517 Google Scholar[30] Rostoker N. and Qerushi A., "Classical Transport in a Field Reversed Configuration," Plasma Physics Reports, Vol. 29, No. 7, 2003, pp. 626–630. https://doi.org/10.1134/1.1592562 CrossrefGoogle Scholar[31] Weber T. E., Slough J. T. and Kirtley D., "The Electrodeless Lorentz Force (ELF) Thruster Experimental Facility," Review of Scientific Instruments, Vol. 83, No. 11, 2012, Paper 113509. https://doi.org/10.1063/1.4759000 Google Scholar[32] Kazeev M. N. and Kozlov V. F., "Ablation-Fed Discharge Characteristics," 31st International Electric Propulsion Conference, IEPC Paper 2009-249, 2009. Google Scholar[33] Snyder J. S., Randolph T. M., Hofer R. R. and Goebel D. M., "Simplified Ion Thruster Xenon Feed System for NASA Science Missions," 31st International Electric Propulsion Conference, IEPC Paper 2009-064, 2009. Google Scholar[34] Fearn D. G. and Philip C. M., "An Investigation of Physical Processes in a Hollow Cathode Discharge," AIAA Journal, Vol. 11, No. 2, 1973, pp. 131–132. https://doi.org/10.2514/3.50441 LinkGoogle Scholar[35] Lev D. R., Mikellides I. G., Pedrini D., Goebel D. M., Jorns B. A. and McDonald M. S., "Recent Progress in Research and Development of Hollow Cathodes for Electric Propulsion," Reviews of Modern Plasma Physics, Vol. 3, No. 1, 2019, Paper 6. https://doi.org/10.1007/s41614-019-0026-0 Google Scholar[36] Goebel D. M., Watkins R. M. and Jameson K. K., "LaB6 Hollow Cathodes for Ion and Hall Thrusters," Journal of Propulsion and Power, Vol. 23, No. 3, 2007, pp. 552–558. https://doi.org/10.2514/1.25475 LinkGoogle Scholar[37] Sengupta A., "Magnetic Confinement in a Ring-Cusp Ion Thruster Discharge Plasma," Journal of Applied Physics, Vol. 105, No. 9, 2009, Paper 093303. https://doi.org/10.1063/1.3106087 Google Scholar[38] Delgado J. J., Baldwin J. A. and Corey R. L., "Space Systems Loral Electric Propulsion Subsystem: 10 Years of On-Orbit Operation," 34th International Electric Propulsion Conference, IEPC Paper 2015-04, 2015. Google Scholar[39] Piñero L. R. and Benson S. W., "NEXT Engineering Model PPU Development, Progress and Plans," 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2011-5659, 2011. https://doi.org/10.2514/6.2011-5659 AbstractGoogle Scholar[40] Bontempo J. J., Brigeman A. N., Fain H. B., Gonzalez M. C., Piñero L. R., Birchenough A. G., Aulisio M. V., Fisher J. and Ferraiuolo B., "The NEXT-C Power Processing Unit: Lessons Learned from the Design, Build, and Test of the NEXT-C PPU for APL's DART Mission," AIAA Propulsion and Energy 2020 Forum, AIAA Paper 2020-3641, 2020. https://doi.org/10.2514/6.2020-3641 Google Scholar[41] Cardin J. M., Cook W. and Bhandari R., "Qualification of an Advanced Xenon Flow Control Module," 33rd International Electric Propulsion Conference, IEPC Paper 2013-382, 2013. Google Scholar[42] Bennett D. C. and Stellrecht E. J., "A Low Power Proportional Flow Control Valve for Electric Propulsion Systems for Satellite Applications," 35th International Electric Propulsion Conference, IEPC Paper 2017-278, 2017. Google Scholar[43] Oh D. Y., Snyder J. S., Goebel D. M., Hofer R. R. and Randolph T. M., "Solar Electric Propulsion for Discovery-Class Missions," Journal of Spacecraft and Rockets, Vol. 51, No. 6, 2014, pp. 1822–1835. https://doi.org/10.2514/1.A32889 LinkGoogle Scholar[44] Racca G. D., "SMART-1 from Conception to Moon Impact," Journal of Propulsion and Power, Vol. 25, No. 5, 2009, pp. 993–1002. https://doi.org/10.2514/1.36278 LinkGoogle Scholar[45] Sackheim R. L., "Overview of United States Space Propulsion Technology and Associated Space Transportation Systems," Journal of Propulsion and Power, Vol. 22, No. 6, 2006, pp. 1310–1332. https://doi.org/10.2514/1.23257 LinkGoogle Scholar[46] Sovey J. S., Rawlin V. K. and Patterson M. J., "Ion Propulsion Development Projects in U.S.: Space Electric Rocket Test I to Deep Space 1," Journal of Propulsion and Power, Vol. 17, No. 3, 2001, pp. 517–526. https://doi.org/10.2514/2.5806 LinkGoogle Scholar[47] Tighe W., Chien K.-R., Solis E., Rebello P., Goebel D. M. and Snyder J. S., "Performance Evaluation of the XIPS 25-cm Thruster for Application to NASA Discovery Missions," 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2006-4666, 2006. https://doi.org/10.2514/6.2006-4666 Google Scholar[48] Snyder J. S., Goebel D. M., Hofer R. R., Polk J. E., Wallace N. C. and Simpson H., "Performance Evaluation of the T6 Ion Engine," Journal of Propulsion and Power, Vol. 28, No. 2, 2012, pp. 371–379. https://doi.org/10.2514/1.B34173 LinkGoogle Scholar[49] Castellini F., Bellei G. and Budnik F., "BepiColombo Orbit Determination Activities During Electric Propulsion Arcs," AIAA Scitech 2020 Forum, AIAA Paper 2020-1701, 2020. https://doi.org/10.2514/6.2020-1701 Google Scholar[50] Delgado J. J., Corey R. L., Murashko V. M., Koryakin A. I. and Pridanikov S. Y., "Qualification of the SPT-140 for Use on Western Spacecraft," 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2014-3606, 2014. https://doi.org/10.2514/6.2014-3606 LinkGoogle Scholar[51] Casaregola C., "Electric Propulsion for Station Keeping and Electric Orbit Raising on Eutelsat Platforms," 34th International Electric Propulsion Conference, IEPC Paper 2015-97, 2015. Google Scholar[52] Fisher J., Wilson A., King D., Meyer S., de Grys K. and Werthman L., "The Development and Qualification of a 4.5 kW Hall Thruster Propulsion Subsystem," 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2003-4551, 2003. https://doi.org/10.2514/6.2003-4551 LinkGoogle Scholar[53] Mueller M. J., "Lessons from the AEHF-1 Bipropellant Maneuver Anomaly with Recurring Themes," 51st AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2015-3955, 2015. https://doi.org/10.2514/6.2015-3955 LinkGoogle Scholar[54] Bober A., Kozubsky K., Komarow G., Maslennikov N., Kozlov A. and Romashko A., "Development and Qualification Test of a SPT Electric Propulsion System for 'GALS' Spacecraft," 23rd International Electric Propulsion Conference, IEPC Paper 1993-008, 1993. Google Scholar[55] Lyszyk M., Klinger E., Sécheresse O., Bugeat J., Valentian D., Cadiou A., Beltan T. and Gelas C., "Qualification Status of the PPS 1350 Plasma Thruster," 35th Joint Propulsion Conference & Exhibit, AIAA Paper 1999-2278, 1999. https://doi.org/10.2514/6.1999-2278 LinkGoogle Scholar[56] Hutchins M., Simpson H. and Jiménez J. P., "QinetiQ's T6 and T5 Ion Thruster Electric Propulsion System Architectures and Performances," 34th International Electric Propulsion Conference, IEPC Paper 2015-131, 2015. Google Scholar[57] Randall P. N., Lewis R. A., Clark S. D., Chan K. K., Gray H., Striedter F. and Steiger C., "BepiColombo—MEPS Commissioning Activities and T6 Ion Thruster Performance During Early Mission Operations," 36th International Electric Propulsion Conference, IEPC Paper 2019-615, 2019. Google Scholar[58] Chien K.-R., Tighe W. G., Bond T. A. and Spears R., "An Overview of Electric Propulsion at L-3 Communications, Electron Technologies Inc.," 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2006-4322, 2006. https://doi.org/10.2514/6.2006-4322 AbstractGoogle Scholar[59] Goebel D. M., Martinez-Lavin M., Bond T. A. and King A. M., "Performance of XIPS Electric Propulsion in On-Orbit Station Keeping of the Boeing 702 Spacecraft," 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2002-4348, 2002. https://doi.org/10.2514/6.2002-4348 AbstractGoogle Scholar[60] Wilson F., King D., Willey M., Aadland R., Tilley D. and de Grys K., "Development Status of the BPT Family of Hall Current Thrusters," 35th Joint Propulsion Conference & Exhibit, AIAA Paper 1999-2573, 1999. https://doi.org/10.2514/6.1999-2573 LinkGoogle Scholar[61] Hoskins A. W., Cassady J. R., Morgan O., Myers R. M., Wilson F., King D. Q. and de Grys K., "30 Years of Electric Propulsion Flight Experience at Aerojet Rocketdyne," 33rd International Electric Propulsion Conference, IEPC Paper 2013-439, 2013. Google Scholar[62] Tilley D. L., Willmes G. F., Myers R. M. and Smith R. D., "Flight Hollow Cathode for Hall Thruster Applications," 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 1998-3339, 1998. https://doi.org/10.2514/6.1998-3339 LinkGoogle Scholar[63] Polk J. E., Goebel D. M. and Tighe W., "Ongoing Wear Test of a XIPS©25-cm Thruster Discharge Cathode," 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2008-4913, 2008. https://doi.org/10.2514/6.2008-4913 AbstractGoogle Scholar[64] Welander B., Monheiser J., Meckel N., de Grys K., Peterson P. and Khayms V., "Demonstration of the XR-12 Hall Current Thruster," 33rd International Electric Propulsion Conference, IEPC Paper 2013-451, 2013. Google Scholar[65] Bourguignon E. and Fraselle S., "Power Processing Unit Activities at Thales Alenia Space in Belgium," 36th International Electric Propulsion Conference, IEPC Paper 2019-584, 2019. Google Scholar[66] Glogowski M. J., Kodys A. D., Pilchuk J. W., Hartmann J. W., Lentati A., Kadakkal V., Pulido C., Trescott J. A., Pucci J. M. and Koch B. A., "Design, Qualification, and Initial Flight Operations of the GEOStar-3TM Electric Propulsion System," 2018 Joint Propulsion Conference, AIAA Paper 2018-4719, 2018. https://doi.org/10.2514/6.2018-4719 Google Scholar[67] Pintó F., Palencia J., Glorieux G. and Wagner N., "Airbus Defence and Space Power Processing Units: New HET and GIT PPU Developments Qualification Status," 35th International Electric Propulsion Conference, IEPC Paper 2017-266, 2017. Google Scholar[68] Day M., Maslennikov N., Randolph T. and Rogers W., "SPT-100 Subsystem Qualification Status," 32nd Joint Propulsion Conference & Exhibit, AIAA Paper 1996-2713, 1996. https://doi.org/10.2514/6.1996-2713 LinkGoogle Scholar[69] Gollor M., Franke A., Schwab U., Dechent W., Glorieux G., Wagner N., Pintó F., Palencia J., Galantini P., Tuccio G. and Bourguignon E., "Electric Propulsion Electronics Activities in Europe 2016," 52nd AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2016-5032, 2016. https://doi.org/10.2514/6.2016-5032 Google Scholar[70] Clark S., Randall P., Lewis R., Marangone D., Goebel D. M., Chaplin V., Gray H., Kempkens K. and Wallace N., "BepiColombo—Solar Electric Propulsion System Test and Qualification Approach," 36th International Electric Propulsion Conference, IEPC Paper 2019-586, 2019. Google Scholar[71] de Grys K., Welander B., DiMicco J. L., Wenzel S., Kay B., Khayms V. and Paisley J., "4.5 kW Hall Thruster System Qualification Status," 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2005-3682, 2005. https://doi.org/10.2514/6.2005-3682 LinkGoogle Scholar[72] Kay R. J., Fisher J. R., Meyer S. D., DiMicco J. L., Hobson D. C., Homiak D. and Stolzenburg S., "The Development of a 4.5 kW Hall Thruster Propulsion System Power Processing Unit," 27th International Electric Propulsion Conference, IEPC Paper 2001-333, 2001. Google Scholar[73] Clayton P., Staley M., Tomescu B., Waranauskas J., Kendall J., Saghri S., Esquivias J., Malone S., Delgado J. and Nelson N., "High Efficiency, Versatile Power Processing Units for Hall-Effect Plasma Thrusters," 2018 Joint Propulsion Conference, AIAA Paper 2018-4642, 2018. https://doi.org/10.2514/6.2018-4642 Google Scholar[74] Gray H. L. and Sutherland O., "Development and Qualification Status of the Electric Propulsion System for the BepiColombo Mission," 33rd International Electric Propulsion Conference, IEPC Paper 2013-114, 2013. Google Scholar[75] Di Cara D. M. and Estublier D., "SMART-1: An Analysis of Flight Data," Acta Astronautica, Vol. 57, Nos. 2–8, July–Oct. 2005, pp. 250–256. https://doi.org/10.1016/j.actaastro.2005.03.036 CrossrefGoogle Scholar[76] Beattie J. R., Matossian J. N. and Robson R. R., "Status of Xenon Ion Propulsion Technology," Journal of Propulsion and Power, Vol. 6, No. 2, 1990, pp. 145–150. https://doi.org/10.2514/3.23236 LinkGoogle Scholar[77] Barbarits J. K., "Xenon Pressure Regulator," 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 1998-3493, 1998. https://doi.org/10.2514/6.1998-3493 Google Scholar[78] Gnizdor R., Kozubsky K., Koryakin A., Maslennikov N., Pridannikov S. and Day M., "SPT100 Life Test with Single Cathode up to Total Impulse Two Million N-Sec," 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 1998-3790, 1998. https://doi.org/10.2514/6.1998-3790 Google Scholar[79] Bushway E. D., King P. T., Engelbrecht C. and Werthman L., "A Xenon Flowrate Controller for Hall Current Thruster Applications," 27th International Electric Propulsion Conference, IEPC Paper 2001-315, 2001. Google Scholar[80] Corey R. L. and Pidgeon D. J., "Electric Propulsion at Space Systems/Loral," 31st International Electric Propulsion Conference, IEPC Paper 2009-270, 2009. Google Scholar[81] Hargus W., Fife J. M., Mason L., Jankovsky R., Haag T., Piñero L. and Snyder J. S., "Preliminary Performance Results of the High Performance Hall System SPT-140," 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2000-3250, 2000. https://doi.org/10.2514/6.2000-3250 Google Scholar[82] Snyder J. S., Lenguito G., Frieman J. D., Haag T. W. and Mackey J. A., "Effects of Background Pressure on SPT-140 Hall Thruster Performance," Journal of Propulsion and Power, Vol. 36, No. 5, 2020, pp. 668–676. https://doi.org/10.2514/1.B37702 LinkGoogle Scholar[83] Kim V., Popov G., Arkhipov B., Murashko V., Gorshkov O., Koroteyev A., Garkusha V., Semenkin A. and Tverdokhlebov S., "Electric Propulsion Activity in Russia," 27th International Electric Propulsion Conference, IEPC Paper 2001-05, 2001. Google Scholar[84] Jankovsky R., Tverdokhlebov S. and Manzella D., "High Power Hall Thrusters," 35th Joint Propulsion Conference & Exhibit, AIAA Paper 1999-2949, 1999. https://doi.org/10.2514/6.1999-2949 Google Scholar[85] Hirshorn S. R., Voss L. D. and Bromley L. K., "NASA Systems Engineering Handbook," NASA SP-2016-6105 Rev 2, Feb. 2017. Google Scholar[86] Roe R. R., "Payload Test Requirements," NASA STD-7002 Rev B, June 2018. Google Scholar[87] Frieman J. D., Kamhawi H., Mackey J., Haag T., Peterson P. Y., Herman D. A., Gilland J. H. and Hofer R. R., "Completion of the Long Duration Wear Test of the NASA HERMeS Hall Thruster," AIAA Propulsion & Energy 2019 Forum, AIAA Paper 2019-3895, 2019. https://doi.org/10.2514/6.2019-3895 Google Scholar[88] Funaki I., Cho S., Sano T., Fukatsu T., Tashiro Y., Shiiki T. and Nakamura Y., "Hall Thruster Breadboard Model Development for ETS-9," 32nd International Symposium on Space Technology and Science, ISTS Paper 2019-b-003, 2019. Google Scholar[89] Shastry R., Herman D. A., Soulas G. C. and Patterson M. J., "End-of-Test Performance and Wear Characterization of NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test," 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2014-3617, 2014. https://doi.org/10.2514/6.2014-3617 Google Scholar[90] Mason L. S., Jankovsky R. S. and Manzella D. H., "1000 Hours of Testing on a 10 Kilowatt Hall Effect Thruster," 37th Joint Propulsion Conference & Exhibit, AIAA Paper 2001-3773, 2001. https://doi.org/10.2514/6.2001-3773 Google Scholar[91] Shashkov A. S. and Lovtsov A. S., "Laboratory Tests of 10.5 kW Hall Thruster with External Layer," 36th International Electric Propulsion Conference, IEPC Paper 2019-392, 2019. Google Scholar[92] Frieman J. D., Kamhawi H., Huang W., Mackey J., Ahern D. M., Peterson P. Y., Gilland J., Hall S. J., Hofer R. R., Inaba D., Dao H., Zubair J., Neuhoff J. and Branch N. A., "Wear Test of the 12.5-kW Advanced Electric Propulsion System Engineering Test Unit Hall Thruster," AIAA Propulsion and Energy 2020 Forum, AIAA Paper 2020-3625, 2020. https://doi.org/10.2514/6.2020-3625 Google Scholar[93] Piragino A., Giannetti V., Reza M., Faraji F., Ferrato E., Kitaeva A., Pedrini D., Andreussi T., Andrenucci M. and Paganucci F., "Development Status of SITAEL's 20 kW Class Hall Thruster," AIAA Propulsion and Energy 2019 Forum, AIAA Paper 2019-3812, 2019. https://doi.org/10.2514/6.2019-3812 Google Scholar[94] Lovtsov A. S., Selivanov M. Y. and Kostin A. N., "Qualification Status of High Power Ion Thruster and Flow Control Unit," Acta Astronautica, Vol. 169, April 2020, pp. 150–157. https://doi.org/10.1016/j.actaastro.2019.12.009 Google Scholar[95] Kamhawi H., Huang W., Haag T., Shastry R., Soulas G., Smith T., Mikellides I. and Hofer R., "Performance and Thermal Characterization of the NASA-300MS 20 kW Hall Effect Thruster," 33rd International Electric Propulsion Conference, IEPC Paper 2013-444, 2013. Google Scholar[96] Snyder J. S., Goebel D. M., Polk J. E., Schneider A. C. and Sengupta A., "Results of a 2000-Hour Wear Test of the NEXIS Ion Engine," 29th International Electric Propulsion Conference, IEPC Paper 2005-281, 2005. Google Scholar[97] Williams G. J., Foster J. E., Miller J. R., Haag T. W., Fong D., Noord J. L. V., Malone S. P., Hickman T. A., Crable V. J. and Patterson M. J., "Wear-Testing of a 21 kW 7600 s Ion Thruster," 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2005-4396, 2005. https://doi.org/10.2514/6.2005-4396 Google Scholar[98] Bromaghim D. R., LeDuc J. R., Salasovich R. M., Spanjers G. G., Fife J. M., Dulligan M. J., Schilling J. H., White D. C. and Johnson L. K., "Review of the Electric Propulsion Space Experiment (ESEX) Program," Journal of Propulsion and Power, Vol. 18, No. 4, 2002, pp. 723–730. https://doi.org/10.2514/2.6009 LinkGoogle Scholar[99] Peterson P. Y., Jacobson D. T., Manzella D. H. and John J. W., "The Performance and Wear Characterization of a High-Power High-Isp NASA Hall Thruster," 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2005-4243, 2005. https://doi.org/10.2514/6.2005-4243 Google Scholar[100] Leiter H.-J., Kuhmann J., Kukies R., Porst J.-P., Berger M. and Rath M., "Results from the RIT-22 Technology Maturity Demonstration Activity," 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2014-3421, 2014. https://doi.org/10.2514/6.2014-3421 Google Scholar[101] Fisher J., Ferraiuolo B., Monheiser J., Goodfellow K., Hoskins A., Myers R., Bontempo J., McDade J., O'Malley T., Soulas G., Shastry R. and Gonzalez M., "NEXT-C Flight Ion System Status," AIAA Propulsion and Energy 2020 Forum, AIAA Paper 2020-3604, 2020. https://doi.org/10.2514/6.2020-3604 Google Scholar[102] Sutton A. M., Bromaghim D. R. and Johnson L. K., "Electric Propulsion Space Experiment (ESEX) Flight Qualification & Operations," 31st Joint Propulsion Conference & Exhibit, AIAA Paper 1995-2503, 1995. https://doi.org/10.2514/6.1995-2503 Google Scholar[103] Zubair J., Dao H., Branch N., Inaba D., Welander B., Frieman J. D., Kamhawi H., Lobbia R. and Hofer R., "12.5 kW Advanced Electric Propulsion System Thruster Development Testing," AIAA Propulsion and Energy 2020 Forum, AIAA Paper 2020-3628, 2020. https://doi.org/10.2514/6.2020-3628 Google Scholar[104] Soendker E., Hablitzel S., Haynie C., Hesterman B., Poehls A., Bachand K., Dinca D., Boomer K., Piñero L. and Birchenough A., "13 kW Advanced Electric Propulsion System Power Processing Unit Development," 36th International Electric Propulsion Conference, IEPC Paper 2019-A930, 2019 Google Scholar[105] Aulisio M. V., Piñero L. R., White B. L., Hickman T. A., Bontempo J. J., Hertel T. A. and Birchenough A. G., "Status of the Development of Flight Power Processing Units for the NASA's Evolutionary Xenon Thruster—Commercial (NEXT-C) Project," 14th International Energy Conversion Engineering Conference, AIAA Paper 2016-4519, 2016. https://doi.org/10.2514/6.2016-4519 LinkGoogle Scholar[106] Thomas R. E., Aulisio M. V., Badger A. R., Heistand C. C., Thompson D. S., Liang R., John J. W., Goodfellow K. D. and Bontempo J. J., "NEXT Single String Integration Tests in Support of the Double Asteroid Redirection Test Mission," 36th International Electric Propulsion Conference, IEPC Paper 2019-853, 2019. Google Scholar[107] Funaki I., Cho S., Sano T., Fukatsu T., Tashiro Y., Shiiki T., Nakamura Y., Watanabe H., Kubota K., Matsunaga Y. and Fuchigami K., "Development of a 6-kW-class Hall Thruster for Geostationary Missions," Acta Astronautica, Vol. 170, May 2020, pp. 163–171. https://doi.org/10.1016/j.actaastro.2019.08.029 CrossrefGoogle Scholar[108] Frieman J. D., Kamhawi H., Huang W., Mackey J., Ahern D. M., Peterson P. Y., Gilland J. H., Hall S. J., Hofer R. R., Inaba D., Dao H., Zubair J., Neuhoff J. and Branch N. A., "Characterization Test of the 12.5-kW Advanced Electric Propulsion System Engineering Test Unit Hall Thruster," AIAA Propulsion and Energy 2020 Forum, AIAA Paper 2020-3626, 2020. https://doi.org/10.2514/6.2020-3626 Google Scholar[109] Vaughan C. E., Cassady R. J., Aadland R. S. and Kay R. J., "Integrated Mission Simulation of a 26 kW Flight Arcjet Propulsion System," 29th Joint Propulsion Conference & Exhibit, AIAA Paper 1993-2395, 1993. https://doi.org/10.2514/6.1993-2395 Google Scholar[110] Shark S. W. H., Hall S. J., Jorns B. A., Hofer R. R. and Goebel D. M., "High Power Demonstration of a 100 kW Nested Hall Thruster System," AIAA Propulsion and Energy 2019 Forum, AIAA Paper 2019-3809, 2019. https://doi.org/10.2514/6.2019-3809 LinkGoogle Scholar[111] Funaki I., Sano T., Fukatsu T., Tashiro Y., Shiiki T., Cho S., Matsunaga Y., Goto D. and Watanabe H., "Development Status of 6-kW-Class Hall Thrusters at JAXA," 36th International Electric Propulsion Conference, IEPC Paper 2019-441, 2019. Google Scholar[112] Goebel D. M., Becatti G., Reilly S., Tilley K. and Hall S., "High Current Lanthanum Hexaboride Hollow Cathode for 20-200 kW Hall Thrusters," 35th International Electric Propulsion Conference, IEPC Paper 2017-303, 2017. Google Scholar[113] Porst J.-P., Altmann C., Arnold C., Kuhmann J., Syring C., Leiter H.-J., Berger M., Soto A., Herty F., Scholze F., Eichhorn C. and Bundesmann C., "The RIT 2X Propulsion System: Current Development Status," 35th International Electric Propulsion Conference, IEPC Paper 2017-505, 2017. Google Scholar[114] Leiter H.-J., Kukies R., Killinger R., Bonelli E., Scaranzin S. and Scortecci F., "RIT-22 Ion Engine Development—Endurance Test and Life Prediction," 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Confer

Referência(s)
Altmetric
PlumX