Artigo Acesso aberto Revisado por pares

SerpinB3 drives cancer stem cell survival in glioblastoma

2022; Cell Press; Volume: 40; Issue: 11 Linguagem: Inglês

10.1016/j.celrep.2022.111348

ISSN

2639-1856

Autores

Adam Lauko, Josephine Volovetz, Soumya M. Turaga, Defne Bayık, Daniel J. Silver, Kelly Mitchell, Erin E. Mulkearns-Hubert, Dionysios C. Watson, Kiran Desai, Manav Midha, Hao Jing, Kathleen McCortney, Alicia Steffens, Ulhas P. Naik, Manmeet S. Ahluwalia, Shideng Bao, Craig Horbinski, Jennifer S. Yu, Justin D. Lathia,

Tópico(s)

Autophagy in Disease and Therapy

Resumo

Despite therapeutic interventions for glioblastoma (GBM), cancer stem cells (CSCs) drive recurrence. The precise mechanisms underlying CSC resistance, namely inhibition of cell death, are unclear. We built on previous observations that the high cell surface expression of junctional adhesion molecule-A drives CSC maintenance and identified downstream signaling networks, including the cysteine protease inhibitor SerpinB3. Using genetic depletion approaches, we found that SerpinB3 is necessary for CSC maintenance, survival, and tumor growth, as well as CSC pathway activation. Knockdown of SerpinB3 also increased apoptosis and susceptibility to radiation therapy. SerpinB3 was essential to buffer cathepsin L-mediated cell death, which was enhanced with radiation. Finally, we found that SerpinB3 knockdown increased the efficacy of radiation in pre-clinical models. Taken together, our findings identify a GBM CSC-specific survival mechanism involving a cysteine protease inhibitor, SerpinB3, and provide a potential target to improve the efficacy of GBM therapies against therapeutically resistant CSCs.

Referência(s)