Artigo Acesso aberto Revisado por pares

A multi‐variable double impedance matching network design algorithm with design example of a low noise amplifier

2022; Wiley; Volume: 32; Issue: 12 Linguagem: Inglês

10.1002/mmce.23462

ISSN

1096-4290

Autores

Neha Bajpai, Yogesh Singh Chauhan,

Tópico(s)

Electromagnetic Compatibility and Noise Suppression

Resumo

International Journal of RF and Microwave Computer-Aided EngineeringVolume 32, Issue 12 e23462 ORIGINAL ARTICLE A multi-variable double impedance matching network design algorithm with design example of a low noise amplifier Neha Bajpai, Corresponding Author Neha Bajpai [email protected] Department of Electrical Engineering, Indian Institute of Technology-Kanpur, Kanpur, India Correspondence Neha Bajpai, WL-215 Nano-Lab, Department of Electrical Engineering, Indian Institute of Technology, Kanpur 208016, India. Email: [email protected]Search for more papers by this authorYogesh Singh Chauhan, Yogesh Singh Chauhan Department of Electrical Engineering, Indian Institute of Technology-Kanpur, Kanpur, IndiaSearch for more papers by this author Neha Bajpai, Corresponding Author Neha Bajpai [email protected] Department of Electrical Engineering, Indian Institute of Technology-Kanpur, Kanpur, India Correspondence Neha Bajpai, WL-215 Nano-Lab, Department of Electrical Engineering, Indian Institute of Technology, Kanpur 208016, India. Email: [email protected]Search for more papers by this authorYogesh Singh Chauhan, Yogesh Singh Chauhan Department of Electrical Engineering, Indian Institute of Technology-Kanpur, Kanpur, IndiaSearch for more papers by this author First published: 11 October 2022 https://doi.org/10.1002/mmce.23462 Funding information: IUSSTF/USISTEF/9th call/EC-059/2018/2019-20; Swarna Jayanti Fellowship, Grant/Award Number: DST/SJF/ETA-02/2017-18; FIST Scheme of the Department of Science and Technology, Grant/Award Number: SR/FST/ETII-072/2016 Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract In this article, we propose a matching network design algorithm based on the segmentation of the real and imaginary part of optimum source impedance curve with respect to space variable x and frequency ω , respectively. The impedance curve (comprising of real and imaginary parts) is approximated as a collection of n linear segments, represented by the weighted sum of n semi-infinite linear functions. Using the numerical method, optimum weight vectors that maximize transducer power gain are obtained to model the real and imaginary parts of the source impedance curve. We get the values of optimum weight vectors and the rational input impedance function for the matching network, which are then synthesized in the desired topology by a continued partial fraction. Experimentally, we validate the novelty of the proposed method by designing matching networks of a wideband custom monolithic microwave integrated circuit (MMIC) low noise amplifier (LNA) in 1.3–2.3 GHz frequency band. The measured results of the designed LNA are significantly close to the simulated results. We bias our LNA at (5 V, 150 mA) and achieve a maximum noise figure of 1.25 dB, OP1dB of 26 dBm, and an average TOI of 38 dBm. Moreover, our design of custom LNA MMIC has an integrated ESD structure while occupying only 0.32 mm2 of chip area. Open Research DATA AVAILABILITY STATEMENT Research data are not shared. REFERENCES 1Ishteyaq I, Muzaffar K. Multiple input multiple output (MIMO) and fifth generation (5G): an indispensable technology for sub-6 GHz and millimeter wave future generation mobile terminal applications. Int J Microwave Wireless Technol. 2021; 14: 1-17. doi:10.1017/S1759078721001100 2Mahmood A, Beltramelli L, Fakhrul Abedin S, et al. Industrial IoT in 5G-and-beyond networks: vision, architecture, and design trends. IEEE Trans Ind Inf. 2022; 18(6): 4122-4137. doi:10.1109/TII.2021.3115697 3Bajpai N, Chauhan YS. A broadband power amplifier MMIC to compensate the frequency dependent behaviour. Paper presented at: 2021 IEEE MTT-S International Microwave and RF Conference (IMARC); December 17-19, 2021; Kanpur, India:1-4. doi: 10.1109/IMaRC49196.2021.9714648 4 ETSI. TS 138 521-2 - V15.3.0 - 5G; NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 2: Range 2 standalone (3GPP TS 38.521-2 version 15.3.0 Release 15). 3GPP TS 38.101-1 version 15.2.0 Release 15 2018; 15.3.0: 1–72. 5 Microwave Products Group DC. Pole/Zero Catalog – Integrated Cosite Equipment (ICE). Catalog 2016. 6 CommScope. Understanding the RF path. Catalog 2018. 7Shen G, Che W, Feng W, Shi Y, Shen Y, Xu F. A miniaturized Ka-band bandpass filter using folded hybrid resonators based on monolithic microwave integrated circuit technology. IEEE Trans Circuits Syst II: Express Briefs. 2021; 68(6): 1778-1782. doi:10.1109/TCSII.2020.3048773 8Fano R. Theoretical limitations on the broadband matching of arbitrary impedances. J Franklin Inst. 1950; 249(1): 57-83. doi:10.1016/0016-0032(50)90006-8 9Youla D. A new theory of broad-band matching. IEEE Trans Circuit Theory. 1964; 11(1): 30-50. doi:10.1109/TCT.1964.1082267 10Gu Q, De Luis JR, Morris AS, Hilbert J. An analytical algorithm for pi-network impedance tuners. IEEE Trans Circuits Syst I: Regul Pap. 2011; 58(12): 2894-2905. doi:10.1109/TCSI.2011.2158700 11Pepe D, Chlis I, Zito D. Transformer-based input integrated matching in cascode amplifiers: analytical proofs. IEEE Trans Circuits Syst I: Regul Pap. 2018; 65(5): 1495-1504. doi:10.1109/TCSI.2017.2762928 12Fu X, Bespalko DT, Boumaiza S. Novel dual-band matching network for effective design of concurrent dual-band power amplifiers. IEEE Trans Circuits Syst I: Regul Pap. 2014; 61(1): 293-301. doi:10.1109/TCSI.2013.2268132 13Carlin H. A new approach to gain-bandwidth problems. IEEE Trans Circuits Syst. 1977; 24(4): 170-175. doi:10.1109/TCS.1977.1084325 14Yarman B, Carlin H. A simplified "real frequency" technique applied to broad-band multistage microwave amplifiers. IEEE Trans Microwave Theory Tech. 1982; 30(12): 2216-2222. doi:10.1109/TMTT.1982.1131411 15Nieuwoudt A, Ragheb T, Nejati H, Massoud Y. Numerical design optimization methodology for wideband and multi-band inductively degenerated cascode CMOS low noise amplifiers. IEEE Trans Circuits Syst I: Regul Pap. 2009; 56(6): 1088-1101. doi:10.1109/TCSI.2008.2006208 16Mazzanti A, Bevilacqua A. Second-order equivalent circuits for the design of doubly-tuned transformer matching networks. IEEE Trans Circuits Syst I: Regul Pap. 2018; 65(12): 4157-4168. doi:10.1109/TCSI.2018.2846029 17Dawson DE. Closed-form solutions for the design of optimum matching networks. IEEE Trans Microwave Theory Tech. 2009; 57(1): 121-129. doi:10.1109/TMTT.2008.2009041 18Carlin H, Amstutz P. On optimum broad-band matching. IEEE Trans Circuits Syst. 1981; 28(5): 401-405. doi:10.1109/TCS.1981.1085001 19Magesacher T, Singerl P, Mataln M. Optimal segmentation for piecewise RF power amplifier models. IEEE Microwave Wireless Compon Lett. 2016; 26(11): 909-911. doi:10.1109/LMWC.2016.2614974 20Kelly N, Zhu A. Low-complexity stochastic optimization-based model extraction for digital predistortion of RF power amplifiers. IEEE Trans Microwave Theory Tech. 2016; 64(5): 1373-1382. doi:10.1109/TMTT.2016.2547383 21Carlin H, Komiak J. A new method of broad-band equalization applied to microwave amplifiers. IEEE Trans Microwave Theory Tech. 1979; 27(2): 93-99. doi:10.1109/TMTT.1979.1129569 22Yarman B, Fettweis A. Computer-aided double matching via parametric representation of Brune functions. IEEE Trans Circuits Syst. 1990; 37(2): 212-222. doi:10.1109/31.45713 23Jung WL, Wu J. Stable broad-band microwave amplifier design. IEEE Trans Microwave Theory Tech. 1990; 38(8): 1079-1085. doi:10.1109/22.57333 24Rinehart J. Optimal Filter Design: The Simplified Real Frequency Technique [PhD thesis]. University of Waterloo; 2015. 25Meng X, Yu C, Liu Y, Wu Y, Wang X, Wang J. Implementation of flat gain broadband power amplifier with impedance rotation compensation. IEEE Access. 2019; 7: 13304-13316. doi:10.1109/ACCESS.2019.2892865 26Yarman BS, Kopru R, Kumar N, Prakash C. High precision synthesis of a Richards immittance via parametric approach. IEEE Trans Circuits Syst I: Regul Pap. 2014; 61(4): 1055-1067. doi:10.1109/TCSI.2013.2285913 27Wang F, To CYS. A generic broadband matching network synthesizer using real frequency technique. Int J RF Microwave Comput-Aided Eng. 2018; 28:e21227. 28Şengül M. Narrower band matching with low quality factor values. IEEE Trans Circuits Syst II: Express Briefs. 2021; 68(7): 2434-2437. doi:10.1109/TCSII.2021.3053997 29Darraji R, Honari MM, Mirzavand R, Ghannouchi FM, Mousavi P. Wideband two-section impedance transformer with flat real-to-real impedance matching. IEEE Microwave Wireless Compon Lett. 2016; 26(5): 313-315. doi:10.1109/LMWC.2016.2548997 30Scucchia L. Closed-form approach to design distributed matching networks for high-frequency amplifiers. Int J RF Microwave Comput-Aided Eng. 2005; 16: 374-384. doi:10.1002/mmce.20158 31Yildiz S, Aksen A, Yarman BS. Design of multiband matching ladders without mutual coupling using parametric representation of Brune functions. Int J RF Microwave Comput-Aided Eng. 2020; 30(10):e22358. 32Dai Z, Pang J, Li M, Li Q, Peng J, He S. A direct solving approach for high-order power amplifier matching network design. IEEE Trans Microwave Theory Tech. 2020; 68(8): 3278-3286. doi:10.1109/TMTT.2020.2995747 33Han Y, Perreault D. Analysis and design of high efficiency matching networks. IEEE Trans Power Electron. 2006; 21(5): 1484-1491. doi:10.1109/TPEL.2006.882083 34Thompson M, Fidler J. Determination of the impedance matching domain of impedance matching networks. IEEE Trans Circuits Syst I: Regul Pap. 2004; 51(10): 2098-2106. doi:10.1109/TCSI.2004.835682 35Bode H. Network Analysis and Feedback Amplifier Design. Bell Telephone Laboratories Series D. Van Nostrand Company, Incorporated; 1945. 36Merat F. Gain Expressions. 1988. http://engr.case.edu/merat_francis/eecs397/Power%20Gain.pdf. 37Gerkis AN. Broadband Impedance Matching Using the "Real Frequency" Network Synthesis Technique. Motorola Canada Limited; 1999. 38Darlington S. A history of network synthesis and filter theory for circuits composed of resistors, inductors, and capacitors. IEEE Trans Circuits Syst I: Fundam Theory Appl. 1999; 46(1): 4-13. doi:10.1109/81.739181 39Ying S, Fazong L, Wei L, Qun W. Optimization design of matching networks for high-frequency antenna. 2013; 01: 229-232. 40Seshu S, Balabanian N. Linear Network Analysis. Wiley; 1959. 41Crupi G, Caddemi A, Raffo A, Salvo G, Nalli A, Vannini G. GaN HEMT noise modeling based on 50-Ω noise factor. Microwave Opt Technol Lett. 2015; 57:937-942. doi:10.1002/mop.28983 42Nalli A, Raffo A, Crupi G, et al. GaN HEMT noise model based on electromagnetic simulations. IEEE Trans Microwave Theory Tech. 2015; 63(8): 2498-2508. doi:10.1109/TMTT.2015.2447542 43Angelov I, Zirath H, Rosman N. A new empirical nonlinear model for HEMT and MESFET devices. IEEE Trans Microwave Theory Tech. 1992; 40(12): 2258-2266. 44Crupi G, Schreurs DMMP, Xiao D, et al. Determination and validation of new nonlinear FinFET model based on lookup tables. IEEE Microwave Wireless Compon Lett. 2007; 17(5): 361-363. doi:10.1109/LMWC.2007.895711 45Radhakrishna U, Choi P, Grajal J, Peh LS, Palacios T, Antoniadis D. Study of RF-circuit linearity performance of GaN HEMT technology using the MVSG compact device model. Paper presented at: 2016 IEEE International Electron Devices Meeting (IEDM); December 2016:3.7.1-3.7.4. 46Jarndal AS, Hussein A, Crupi G, Caddemi A. Reliable noise modeling of GaN HEMTs for designing low-noise amplifiers. Int J Numer Modell: Electron Netw Dev Fields. 2020; 33:e2585. doi:10.1002/jnm.2585 47Dasgupta A, Khandelwal S, Chauhan YS. Surface potential based modeling of thermal noise for HEMT circuit simulation. IEEE Microwave Wireless Compon Lett. 2015; 25(6): 376-378. doi:10.1109/LMWC.2015.2422472 48Dasgupta A, Ghosh S, Ahsan SA, Chauhan YS, Khandelwal S, Defrance N. Modeling DC, RF and noise behavior of GaN HEMTs using ASM-HEMT compact model. Paper presented at: 2016 IEEE MTT-S International Microwave and RF Conference (IMaRC); December 05-09, 2016; New Delhi, India:1-4. 49Bajpai N, Pampori A, Maity P, Shah M, Das A, Chauhan YS. A low noise power amplifier MMIC to mitigate co-site interference in 5G front end modules. IEEE Access. 2021; 9:124900. doi:10.1109/ACCESS.2021.3108596 50Takayama Y. A new load-pull characterization method for microwave power transistors. Paper presented at: 1976 IEEE MTT-S International Microwave Symposium Digest; June 1976:218-220. doi: 10.1109/MWSYM.1976.1123701 51 TT Inc. Low Noise Amplifiers and Drivers, TP03XXX. http://www.tagoretech.com/page.php?page-id=12. 52Li X, Serdijn WA. On the design of broadband power-to-current low noise amplifiers. IEEE Trans Circuits Syst I: Regul Pap. 2012; 59(3): 493-504. doi:10.1109/TCSI.2011.2165413 53Parvizi M, Allidina K, El-Gamal MN. An ultra-low-power wideband inductorless CMOS LNA with tunable active shunt-feedback. IEEE Trans Microwave Theory Tech. 2016; 64(6): 1843-1853. doi:10.1109/TMTT.2016.2562003 54Jarndal AH, Bassal AM. A broadband hybrid GaN cascode low noise amplifier for WiMax applications. 2018 3rd International Conference on Microwave and Photonics (ICMAP). 2018;1-2. doi:10.1109/ICMAP.2018.8354533 55Çağlar A, Yelten MB. Design of cryogenic LNAs for high linearity in space applications. IEEE Trans Circuits Syst I: Regul Pap. 2019; 66(12): 4619-4627. doi:10.1109/TCSI.2019.2936506 56Nejadhasan S, Zaheri F, Abiri E, Salehi M. PVT-compensated low-voltage and low-power CMOS LNA for IoT applications. Int J RF Microwave Comput-Aided Eng. 2020; 30:e22419. doi:10.1002/mmce.22419 57Kim MS, Jhon H. An ESD and interference-robust protection circuit for cascode low-noise amplifier in CMOS-SOI technology. IEEE Access. 2021; 9: 75293-75301. doi:10.1109/ACCESS.2021.3081169 58 ITRS. 2001 ITRS System Drivers. Tech. Rep., International Technology Roadmap for Semiconductors; 2001. Volume32, Issue12December 2022e23462 ReferencesRelatedInformation

Referência(s)