Artigo Acesso aberto Produção Nacional Revisado por pares

IAPT chromosome data 36

2022; Wiley; Volume: 71; Issue: 5 Linguagem: Inglês

10.1002/tax.12809

ISSN

1996-8175

Autores

Karol Marhold, Jaromír Kučera, Itziar Arnelas, R. Barba‐González, Pilar Catalán, Silvokleio da Costa Silva, Julio R. Daviña, Yhanndra K. Dias Silva, Fabiana Eckers, Analía Cecilia Gianini Aquino, Diego Hojsgaard, Ana I. Honfi, Luís A. Inda, Eric J. Martínez, María Fernanda Moreno‐Aguilar, Thiago Nascimento, Gustavo Paniagua, Andrea Pedrosa‐Harand, María Constanza Perichon, Marisa Toniolo Pozzobon, Anna Verena Reutemann, Orlando Abrahán Rodríguez Mata, Mariela Sader, Mayco Werllen dos Santos Sousa, Ernesto Tapia‐Campos, José Francisco Montenegro Valls,

Tópico(s)

Genetics and Neurodevelopmental Disorders

Resumo

KM, https://orcid.org/0000-0002-7658-0844; JK, https://orcid.org/0000-0002-9983-7630; IA, https://orcid.org/0000-0003-0700-8964; RBG, https://orcid.org/0000-0001-9336-090X; PC, https://orcid.org/0000-0001-7793-5259; SCS, https://orcid.org/0000-0002-9975-1212; JRD, https://orcid.org/0000-0002-1886-7521; YKDS, https://orcid.org/0000-0002-6488-4736; FE, https://orcid.org/0000-0002-2886-7920; ACGA, https://orcid.org/0000-0003-4392-9445; DHH, https://orcid.org/0000-0002-8709-4091; AIH, https://orcid.org/0000-0002-0915-2129; LAI, https://orcid.org/0000-0002-1214-375X; EJM, https://orcid.org/0000-0002-7769-0199; MFMA, https://orcid.org/0000-0003-0058-1792; TN, https://orcid.org/0000-0002-7742-0260; GP, https://orcid.org/0000-0001-8394-9120; APH, https://orcid.org/0000-0001-5213-4770; MCP, https://orcid.org/0000-0001-7932-8321; MTP, https://orcid.org/0000-0002-8213-9967; AVR, https://orcid.org/0000-0003-1043-4999; OARM, https://orcid.org/0000-0002-8987-9546; MAS, https://orcid.org/0000-0001-8188-2217; MWSS, https://orcid.org/0000-0001-5298-7407; ETC, https://orcid.org/0000-0002-1130-6246; JFMV, https://orcid.org/0000-0002-4586-5142 * Address for correspondence: [email protected] This study was supported by Agencia Nacional de Promoción Científica y Técnica (ANPCyT) grant nos. PICT-2016-1637 and -2017-4203, by Universidad Nacional de Misiones (UNaM) 16Q1240-PI MX1205-Programa de Cooperación Científico-Tecnológica between Ministerio de Ciencia, Tecnología e Innovación Productiva de la República Argentina (MINCyT), Consejo Nacional de Ciencia y Tecnología de México (CONACyT, Project 191711) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and with a doctoral fellowship from CONICET to ACGA and OARM. All materials CHN. Habranthus cardenasianus Traub & I.S.Nelson, 2n = 24; Argentina, Salta, 10 Oct 2013, J.R. Daviña, A.I. Honfi & E.J. Martínez 666 (MNES). * Address for correspondence: [email protected] This research was carried out within the framework of the “Grasses and grass-endophyte interactions: genomics and ecological adaptation” project funded by the Spanish Aragon Government (grant LMP82_21) and the Spanish Aragon Government and European Social Fund Bioflora research group grant A01-20R. The field expedition to the Ecuadorian paramos was supported by a European and Spanish Government (SEPIE) Erasmus+KA107 mobility grant (2019-1-ES01-KA107-062605) between the Universidad de Zaragoza (Spain) and the Universidad Técnica Particular de Loja (Ecuador) and by a University of Zaragoza-Santander Ph.D. fellowship to MFMA. Permission to collect Festuca samples in the Ecuadorian paramos was given by the Ministry of Environment, Water and Ecological Transition of Ecuador (MAE-DNB-CM-2015-0016). All materials CHN; collected in Ecuador. Festuca andicola Kunth, 2n = 42; M.F. Moreno & al. F90_i (HUTPL 14037). Festuca caldasii (Kunth) Kunth, 2n = 28; M.F. Moreno & al. F98_i (HUTPL 14054). Festuca chimborazensis subsp. micacochensis Stančík, 2n = 42; M.F. Moreno & al. F58_i (HUTPL 14065). Festuca subulifolia Benth., 2n = 42; M.F. Moreno & al. F60_i (HUTPL 14099). * Address for correspondence: [email protected] Dipteryx lacunifera Ducke, 2n = 16, CHN. Brazil, Piauí, S.C. Silva & M. Lenara (TEPB 205). * Address for correspondence: [email protected] Financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico/CNPq (Research fellowship 310026/2018-0) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/CAPES. All materials CHN. Paspalum carinatum Humb. & Bonpl. ex Flüggé, 2n = 40; Brazil, Goiás, J.F.M. Valls, M.W.S. Sousa & C.A.D. Welker 16606 (CEN). Paspalum compressifolium Swallen, 2n = 40; Brazil, Paraná, J.F.M. Valls, M.W.S. Sousa, C.A.D. Welker & A.P. Fávero 16474 (CEN). Paspalum divergens Döll, 2n = 60; Brazil, Rio de Janeiro, M.P. Araújo, A.C. Petry & J.F.M. Valls 331 (CEN). Paspalum fimbriatum Kunth, 2n = 20; Brazil, Piauí, M.W.S. Sousa 135 (UB). Paspalum foveolatum Steud., 2n = 40; Brazil, Goiás, J.F.M. Valls, R.C. Oliveira, C. Silva, C.O. Moura & A.C.V. Berto 16189 (CEN); Brazil, Goiás, J.F.M. Valls & M.L. Paulo 17026 (CEN). Paspalum giuliettiae Pimenta, G.H.Rua & R.P.Oliveira, 2n = 40; Brazil, Bahia, J.F.M. Valls 17012 (CEN). Paspalum juergensii Hack., 2n = 20; Brazil, Rio Grande do Sul, J.F.M. Valls, L.N. da Silva & E. Valduga 16981 (CEN); Brazil, Santa Catarina, J.F.M. Valls, M.W.S. Sousa, C.A.D. Welker & A.P. Fávero 16460 (CEN). Paspalum lenticulare Kunth, 2n = 20; Brazil, Tocantins, J.F.M. Valls, M.W.S. Sousa & C.A.D. Welker 16548 (CEN); 2n = 40; Brazil, Goiás, J.F.M. Valls, M.W.S. Sousa & C.A.D. Welker 16497 (CEN); Brazil, Tocantins, J.F.M. Valls, M.W.S. Sousa & C.A.D. Welker 16553 (CEN). Paspalum maculosum Trin., 2n = 40; Brazil, Bahia, J.F.M. Valls, M.W.S. Sousa & C.A.D. Welker 16586 (CEN). Paspalum mandiocanum Trin., 2n = 60; Brazil, Paraná, J.F.M. Valls, M.W.S. Sousa, C.A.D. Welker & A.P. Fávero 16348, 16468 (CEN). Paspalum multicaule Poir., 2n = 20; Brazil, Goiás, J.F.M. Valls, H.M. Longhi-Wagner, R.C. Oliveira, C.A.D. Welker & D.M. Ramos 16623 (CEN). Paspalum notatum Flüggé, 2n = 40; Brazil, Distrito Federal, J.F.M. Valls & M.W.S. Sousa 16774 (CEN). Paspalum pauciciliatum (Parodi) Herter, 2n = 40; Brazil, São Paulo, J.F.M. Valls, M.W.S. Sousa, C.A.D. Welker & A.P. Fávero 16311 (CEN). Paspalum plicatulum Michx., 2n = 40; Brazil, Paraná, J.F.M. Valls, M.W.S. Sousa, C.A.D. Welker & A.P. Fávero 16355 (CEN). Paspalum redondense Swallen, 2n = 20; Brazil, Paraná, J.F.M. Valls, M.W.S. Sousa, C.A.D. Welker & A.P. Fávero 16417 (CEN). Paspalum regnellii Mez, 2n = 40; Brazil, Paraná, J.F.M. Valls, M.W.S. Sousa, C.A.D. Welker & A.P. Fávero 16395 (CEN). Paspalum scalare Trin., 2n = 20; Brazil, Goiás, J.F.M. Valls, H.M. Longhi-Wagner, R.C. Oliveira, C.A.D. Welker & D.M. Ramos 16652 (CEN). Paspalum thrasyoides (Trin.) S.Denham, 2n = 40; Brazil, Goiás, J.F.M. Valls, M.W.S. Sousa & C.A.D. Welker 16509 (CEN). * Address for correspondence: [email protected] This study was supported by Agencia Nacional de Promoción Científica y Técnica (ANPCyT) grant no. PICT-2017-4203 and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and a postdoctoral fellowship from CONICET to AVR and doctoral fellowships to MCP and FE. All materials CHN; collectors: D = J.R. Daviña, H = A.I. Honfi, Hojs = D.H. Hojsgaard, S = M.A. Sader, SN = V. Solis Neffa, W = M. Worthington. Paspalum arundinellum Mez, 2n = 50; Argentina, Misiones Province, 22 Jul 1993, H 297 (MNES); Argentina, Formosa Province, Formosa, 2 Jun 2000, H & D 1107 (CTES, MNES); H & D 1108 (CTES, MNES, SI). Paraguay, Cordillera Department, 1 Dec 2000, D & H 495 (CTES, MNES, SI). Paspalum buckleyanum Vasey, 2n = 40; Argentina, Salta Province, 31 Mar 2012, H 1586 (MNES); Argentina, Formosa Province, 2 Apr 2012, H 1600 #1 (MNES). 2n = 50; Argentina, Formosa Province, 2 Apr 2012, H 1600 #1, 2, 3, 3′ (MNES); Argentina, Corrientes Province, 20 Feb 2015, H 1736 (MNES); 7 Dec 2015, H 2127 (MNES). Paspalum commune Lillo, 2n = 40; n = 20; Argentina, Jujuy Province, 20 Jan 2002, SN 681 (BAA, CTES, MNES, SI, US); Argentina, Tucumán Province, 1 Apr 2012, H 1585 (MNES). Paspalum compressifolium Swallen, 2n = 40; Argentina, Misiones Province, 15 Feb 2011, H 1535 #1 (MNES); 10 Oct 2017, H & D 2276 (MNES). Paspalum conjugatum P.J.Bergius, 2n = 40; Argentina, Misiones Province, 9 Apr 2006, H 1299 (MNES). Puerto Rico, Aibonito, 4 Aug 2009, W 35705 (CTES, UTEP); 16 Jul 2014, W 37480 (CTES, UTEP). Paspalum conspersum Schrad., n = 30; Argentina, Misiones Province, 21 Apr 2001, Hojs 175 (CTES, MNES); 10 Mar 2001, H 1143 (MNES). Paspalum dedeccae Quarin, 2n = 40; Argentina, Misiones Province, 21 Sep 1995, H 649 (CTES, MNES, SI). Paspalum denticulatum Trin., n = 20; Argentina, Misiones Province, 31 Dec 2002, Hojs 256 (CTES, MNES, SI). Paspalum ellipticum Döll, 2n = ca. 60; Argentina, Misiones Province, 21 Jan 1995, H 648 (CTES, CORD, MNES). Paspalum glaucescens Hack., 2n = 40; Argentina, Misiones Province, 17 Dec 2005, S 89 (MNES). Paspalum guenoarum Arechav., 2n = 40; Argentina, Misiones Province 3 Feb 1993, H 223 (CTES, CORD, MNES); 4 Mar 1993, D 161 (MNES). Paspalum inaequivalve Raddi, n = 30; Argentina, Misiones Province, 8 Nov 2001, Hojs 221 (MNES). Paspalum intermedium Munro ex Morong & Britton, 2n = 40; Argentina, Misiones Province, 23 Oct 1993, H 387 (MNES). Paspalum ionanthum Chase, 2n = 40; n = 20; Argentina, Corrientes Province, 5 Jan 2006, S 85 (MNES). Paspalum malacophyllum Trin., 2n = 40; Argentina, Córdoba Province, 22 Sep 2003, Hojs 325 (MNES). Paspalum pauciciliatum (Parodi) Herter, 2n = 40; Argentina, Misiones Province, 29 Jan 1992, H 167 (MNES). Paspalum plicatulum Michx., 2n = 40; Argentina, Misiones Province, 15 Feb 2011, H & D 1533 (MNES). Paraguay, Central Department, 8 Mar 2004, H & D 1238 (MNES). n = 20; Paraguay, Central Department, 26 Apr 2001, H & D 1121 (MNES); Paraguay, Presidente Hayes Department, 5 Mar 2006, H & D 1278 (MNES). Paspalum regnellii Mez, 2n = 40; Argentina, Misiones Province, 19 Mar 1991, H 120 (MNES); 30 Mar 1991, H 131B (MNES). Paspalum rufum Nees ex Steud., 2n = 40; Argentina, Corrientes Province, 30 Apr 2010, H 1462 (MNES). Paspalum simplex Morong ex Britton, 2n = 40; Argentina, Misiones Province, 12 Feb 2012, H 2560 (MNES). Paspalum unispicatum (Scribn. & Merr.) Nash, 2n = 40; Argentina, Córdoba Province, 3 Jan 2006, S 88 (MNES); Argentina, Salta Province, 1 Apr 2012, H 1590 (MNES). * Address for correspondence: [email protected] This study was supported by Agencia Nacional de Promoción Científica y Técnica (ANPCyT) grant nos. PICT-2016-1637, 2017-4203, by Universidad Nacional de Misiones (UNaM) 16Q1240-PI and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and a doctoral fellowship from CONICET to OARM and ACGA. All materials CHN; collectors: D = J.R. Daviña, H = A.I. Honfi, OR = O.A. Rodríguez Mata; vouchers at MNES. Habranthus brachyandrus (Baker) Sealy, 2n = 24; Argentina, Misiones Province, 27 Mar 2017, OR 2; 8 Jan 2017, OR 3; 8 Jan 2017, OR 4; 19 Apr 2017, OR 5; 10 Jan 2017, OR 7. Hippeastrum striatum (Lam.) H.E.Moore, 2n = 22; Argentina, Misiones Province, 21 Apr, 2017, OR 13; 7 Apr 2017, OR 14. 2n = 55; Argentina, Buenos Aires Province, 2 Feb 2017, OR 8. Argentina, Misiones Province, 21 Nov 2006, D 609; 30 Apr 2015, H 2046; 8 Nov 2015, H 2104A; 14 Apr 2007, H 1311; 3 May 2014, H 1712; 10 Jan 2017, OR 6; 2 Feb 2017, OR 11; 7 Apr 2017, OR 12; 29 Sep 2018, OR 15; 29 Sep 2018, OR 16; 29 Sep 2018, OR 17; 29 Sep 2018, OR 18; 7 Oct 2018, OR 19. Karol Marhold (ed.),1,2 Jaromír Kuˇcera (ed.),1 Itziar Arnelas,3 Rodrigo Barba-González,4 Pilar Catalán,5,6 Silvokleio da Costa Silva,7 Julio Rubén Daviña,8 Yhanndra K. Dias Silva,9 Fabiana Eckers,8 Analía Cecilia Gianini Aquino,8 Diego Hernán Hojsgaard,10 Ana Isabel Honfi,8 Luis A. Inda,5,11 Eric Javier Martínez,12 María Fernanda Moreno-Aguilar,5 Thiago Nascimento,9 Gustavo Paniagua,8 Andrea Pedrosa-Harand,9 María Constanza Perichon,8 Marisa Toniolo Pozzobon,13 Anna Verena Reutemann,12 Orlando Abrahán Rodríguez Mata,8 Mariela Analía Sader,8 Mayco Werllen dos Santos Sousa,14 Ernesto Tapia-Campos4 & José Francisco Montenegro Valls13,14 1 Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovak Republic 2 Department of Botany, Charles University, Benátská 2, 128 01 Praha, Czech Republic 3 Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, LojaSan Cayetano Alto, s/n, 11-01-608, Loja, Ecuador 4 Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. Biotecnología Vegetal, Av. Normalistas 800, Colinas de la Normal, Guadalajara, Jalisco, C.P. 44270, Mexico 5 Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Carretera Cuarte s/n, 22071, Spain 6 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Spain 7 Laboratory of Genetics and Germplasm Conservation, Campus Professor Cinobelina Elvas, Federal University of Piauí, Bom Jesus, 64900-000, Piauí, Brazil 8 Programa de Estudios Florísticos y Genética Vegetal, Instituto de Biología Subtropical CONICET-UNaM, Universidad Nacional de Misiones, nodo Posadas, Rivadavia 2370, 3300 Posadas, Argentina 9 Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Prof. Moraes Rego Ave., 50670-901, Recife, Brazil 10 Albrecht-von-Haller Institut für Pflanzenwissenschaften, Georg-August Universität, Untere Karspüle 2, Göttingen, Germany 11 Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Aragón, Spain 12 Instituto de Botánica del Nordeste, CONICET-UNNE, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sargento Cabral 2131, 3400 Corrientes, Argentina 13 Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica – PqEB s/n, CEP 70770-917, Brasília, Distrito Federal, Brazil 14 Programa de Pós-Graduação em Botânica, Universidade de Brasília, Campus Darcy Ribeiro, CEP 70910-900, Brasília, Distrito Federal, Brazil Author information KM, https://orcid.org/0000-0002-7658-0844; JK, https://orcid.org/0000-0002-9983-7630; IA, https://orcid.org/0000-0003-0700-8964; RBG, https://orcid.org/0000-0001-9336-090X; PC, https://orcid.org/0000-0001-7793-5259; SCS, https://orcid.org/0000-0002-9975-1212; JRD, https://orcid.org/0000-0002-1886-7521; YKDS, https://orcid.org/0000-0002-6488-4736; FE, https://orcid.org/0000-0002-2886-7920; ACGA, https://orcid.org/0000-0003-4392-9445; DHH, https://orcid.org/0000-0002-8709-4091; AIH, https://orcid.org/0000-0002-0915-2129; LAI, https://orcid.org/0000-0002-1214-375X; EJM, https://orcid.org/0000-0002-7769-0199; MFMA, https://orcid.org/0000-0003-0058-1792; TN, https://orcid.org/0000-0002-7742-0260; GP, https://orcid.org/0000-0001-8394-9120; APH, https://orcid.org/0000-0001-5213-4770; MCP, https://orcid.org/0000-0001-7932-8321; MTP, https://orcid.org/0000-0002-8213-9967; AVR, https://orcid.org/0000-0003-1043-4999; OARM, https://orcid.org/0000-0002-8987-9546; MAS, https://orcid.org/0000-0001-8188-2217; MWSS, https://orcid.org/0000-0001-5298-7407; ETC, https://orcid.org/0000-0002-1130-6246; JFMV, https://orcid.org/0000-0002-4586-5142 * Address for correspondence: [email protected] This study was supported by Agencia Nacional de Promoción Científica y Técnica (ANPCyT) grant nos. PICT-2016-1637 and -2017-4203, by Universidad Nacional de Misiones (UNaM) 16Q1240-PI MX1205-Programa de Cooperación Científico-Tecnológica between Ministerio de Ciencia, Tecnología e Innovación Productiva de la República Argentina (MINCyT), Consejo Nacional de Ciencia y Tecnología de México (CONACyT, Project 191711) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and with a doctoral fellowship from CONICET to ACGA and OARM. Methods are described in Daviña (2001) and Barba-González & al. (2010). * First chromosome count for the species. Habranthus cardenasianus Traub & I.S.Nelson *2n = 24, CHN. Argentina, Province of Salta, Campo Quijano Department, Rosario de Lerma, 24°54′S 65°38′W, 10 Oct 2013, Daviña, Honfi & Martínez 666 (MNES). [Fig. 1A] Habranthus cardenasianus has 2n = 4x = 24 chromosomes (Fig. 1B), and a basic chromosome number of x = 6, which agrees with Flory & Flagg (1959). The karyotypic formula consists in 12 metacentric (m) and 12 submetacentric (sm) chromosomes (Fig. 2). The genomic size is 213.73 μm. The mean centromeric index (i) is 36.77 and the mean chromosomal length is 8.90 μm, which indicate that it is a slightly asymmetric karyotype because it belongs to Stebbins's (1971) category 2A and because they have intrachromosomal (A1) and interchromosomal asymmetry (A2) values of 0.386 and 0.203, respectively, according to Romero Zarco (1986). For the first time, molecular techniques were applied to this species. The heterochromatic region observed is CMA+ DAPI− and is located on the short arms of metacentric chromosomes 9 and 10, the long arm of metacentric chromosome 1 and the short arms of submetacentric chromosomes 23 and 24. The amount of constitutive heterochromatin rich in GC is 1.68% of the genome (Figs. 2, 3). Fluorescent in situ hybridization showed the hybridization sites of the ribosomal DNA probes. The presence of active ribosomal genes (rDNA 18S/26S) was located on the short arms of chromosomes 9 and 10 (m), on the long arm of chromosome 1 (m) and on the short arms of submetacentric chromosomes 23 and 24. All signals were located in the terminal position. The 5S rDNA probe hybridized at six locations. Signals were observed in the terminal position of the long arms of the submetacentric chromosomes 13, 14, 19 and 20, and in the intercalary position of chromosomes 23 and 24 (Figs. 2, 3). There are few studies of chromosomal banding patterns such as fluorescent in situ hybridization (Barros e Silva & Guerra, 2010; Felix & al., 2011). The hybridization sites of ribosomal DNA banding and patterns of constitutive heterochromatin could be used to characterize species or cytotypes. These contributions to the cytogenetics of H. cardenasianus add to the few molecular cytogenetics studies in the Hippeastreae clade. Furthermore, karyotype and constitutive heterochromatin characterization contribute to the taxonomical identity of this controversial species. Some works suggest that H. cardenasianus could be considered a synonym of H. robustus Herb. (Arroyo-Leuenberger, 2009), a species with two recorded chromosome numbers (2n = 12, 48) (Gianini Aquino & al., 2020). However, in all the studied accessions of H. robustus, only a diploid cytotype was unfailingly found (Gianini Aquino & al., 2020). Ongoing studies about cyto-embryology, genetic systems and morphology of Habranthus species will shed light on the taxonomical status of both species. The conventional cytogenetic and triple sequential CMA/DA/DAPI staining techniques were applied according to Daviña (2001). Fluorescent in situ hybridization was performed using two different probes, (i) clone pTa71, which contains the 45S fragment of wheat ribosomal DNA (Gerlach & Bedbrook, 1979), and (ii) clone pTa794, which contains the wheat ribosomal DNA 5S fragment (Gerlach & Dyer, 1980), according to Barba-Gonzalez & al. (2010). LITERATURE CITED Amaral, A.C. 2011. Habranthus Herb. (Amaryllidaceae) no Brasil: Estudo taxonômico, caracterização morfológica e relações filogenéticas. Tesis Doctoral, Universidade de Brasília, Brasília, Brazil. Arroyo, S.C. 1990. Habranthus (Amaryllidaceae) en Argentina y Uruguay. Parodiana 6: 11–30. Arroyo-Leuenberger, S. 2009. Amaryllidaceae. Pp. 394–403 in: Kiesling, R., Guaglianone, E.R., Cialdella, A.M. & Rúgolo de Agrasar, Z.E. (eds.), Flora de San Juan: República Argentina, vol. 4, Monocotiledóneas. Mendoza: Editorial Fundación Universidad Nacional de San Juan; Zeta Editores. Barba-González, R., Revuelta-Arreola, M.M., Rodriguez-Rodriguez, A.A. & Santacruz-Ruvalcaba, F. 2010. Chromosome identification in the genus Lilium using comparative genomic in situ hybridization (cGISH). Acta Hort. 855: 35–40. https://doi.org/10.17660/ActaHortic.2010.855.3 Barros e Silva, A.E. & Guerra, M. 2010. The meaning of DAPI bands observed after C-banding and FISH procedures. Biotechnic Histochem. 85: 115–125. https://doi.org/10.3109/10520290903149596 Daviña, J.R. 2001. Estudios citogenéticos en algunos géneros argentinos de Amaryllidaceae. Tesis doctoral, Universidad Nacional de Córdoba, Córdoba, Argentina. Felix, W.J.P., Felix, L.P., Melo, N.F., Dutilh, J.H.A. & Carvalho, R. 2011. Cytogenetics of Amaryllidaceae species: Heterochromatin evolution in different ploidy levels. Pl. Syst. Evol. 292: 215–221. https://doi.org/10.1007/s00606-011-0418-2 Flory, W.S. & Flagg, R.O. 1959. The chromosomes of three Mexican Habranthus species. Pl. Life 15: 51–54. García, N., Meerow, A.W., Arroyo-Leuenberger, S., Oliveira, R.S., Dutilh, J.H., Soltis, P.S. & Judd, W.S. 2019. Generic classification of Amaryllidaceae tribe Hippeastreae. Taxon 68: 481–498. https://doi.org/10.1002/tax.12062 Gerlach, W.L. & Bedbrook, J.R. 1979. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucl. Acids Res. 7: 1869–1885. https://doi.org/10.1093/nar/7.7.1869 Gerlach, W.L. & Dyer, T.A. 1980. Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucl. Acids Res. 8: 4851–4865. https://doi.org/10.1093/nar/8.21.4851 Gianini Aquino, A.C., Honfi, A.I. & Daviña, J.R. 2020. IAPT chromosome data 33/7. In: Marhold, K. & Kučera, J. (eds.) & al., IAPT chromosome data 33. Taxon 69: 1400, E27–E29. https://doi.org/10.1002/tax.12414 Howard, T.M. 2001. Bulbs for warm climates. Austin: University of Texas Press. https://doi.org/10.7560/731257 Meerow, A.W. 2010. Convergence or reticulation? Mosaic evolution in the canalized American Amaryllidaceae. Pp. 145–168 in: Seberg, O., Petersen, G., Barfod, A.S. & Davis, J.I. (eds.), Diversity, phylogeny and evolution in the monocotyledons. Aarhus: Aarhus University Press. Meerow, A. & Snijman, D.A. 1998. Amaryllidaceae. Pp. 83–110 in: Kubitzki, K. (ed.), The families and genera of vascular plants, vol. 3, Flowering plants: Monocotyledons; Lilianae (except Orchidaceae). Berlin: Springer. https://doi.org/10.1007/978-3-662-03533-7_11 Roitman, G., Maza, I. & Castillo, A. 2006. Presencia de Habranthus cardenasianus (Amaryllidaceae) en Argentina. Bol. Soc. Argent. Bot. 41: 95–98. Romero Zarco, C. 1986. A new method for estimating karyotype asymmetry. Taxon 35: 526–530. https://doi.org/10.2307/1221906 Stebbins, G.L. 1971. Chromosomal evolution in higher plants. Reading, Mass.: Addison-Wesley. *Address for correspondence: [email protected] This research was carried out within the framework of the “Grasses and grass-endophyte interactions: genomics and ecological adaptation” project funded by the Spanish Aragon Government (grant LMP82_21) and the Spanish Aragon Government and European Social Fund Bioflora research group grant A01-20R. The field expedition to the Ecuadorian paramos was supported by a European and Spanish Government (SEPIE) Erasmus+KA107 mobility grant (2019-1-ES01-KA107-062605) between the Universidad de Zaragoza (Spain) and the Universidad Técnica Particular de Loja (Ecuador) and by a University of Zaragoza-Santander Ph.D. fellowship to MFMA. Permission to collect Festuca samples in the Ecuadorian paramos was given by the Ministry of Environment, Water and Ecological Transition of Ecuador (MAE-DNB-CM-2015-0016). Festuca andicola Kunth 2n = 42, x = 6, CHN. Ecuador: Loja, Saraguro, Cerro de Arcos, 3.563037°S, 79.463008°W, 3650 m; 21 May 2018, M.F. Moreno & al. F90_i (HUTPL 14037). Festuca caldasii (Kunth) Kunth 2n = 28, x = 4, CHN. Ecuador: Loja, Catamayo, route Las Chinchas–Tambara, 3.967127°S, 79.515866°W, 2050 m; 26 May 2018, M.F. Moreno & al. F98_i (HUTPL 14054). Festuca chimborazensis subsp. micacochensis Stančík 2n = 42, x = 6, CHN. Ecuador: Chimborazo, Riobamba, route Chimborazo–Guaranda, 1.44243°S, 78.93002°W, 4138 m; 30 Sep 2017, M.F. Moreno & al. F58_i (HUTPL 14065). Festuca subulifolia Benth. 2n = 42, x = 6, CHN. Ecuador: Chimborazo, Riobamba, route Chimborazo–Guaranda, 2.17711°S, 78.51006°W, 3472 m, 1 Oct 2017, M.F. Moreno & al. F60_i (HUTPL 14099). The Ecuadorian Andean paramos are considered hotspots of global biodiversity, hosting about 6.7% of the world's endemic plants (Myers & al., 2000). The most abundant plant communities of these paramunean ecosystems are the pajonales, extensive grazed communities dominated by cold seasonal grasses adapted to the high Andean climate (Sklenář & Ramsay, 2001). Among the most frequent pajonal grasses are species of the genus Festuca. This genus is the largest of the pooid subtribe Loliinae Dumort. and consists of more than 600 species distributed in temperate and mountainous regions of both hemispheres (Catalán, 2006). Approximately a quarter of the South American Festuca species are endemic to the North Andean region. Stančík (2004) recognized 23 species of Festuca in Ecuador and Stančík & Peterson (2007) 53 in the paramos of the northern Andes. Festuca species show a uniform chromosome base number of x = 7, and ploidy levels range from diploids to dodecaploids (Catalán, 2006). Phylogenetic studies have detected the existence of two main clades within Festuca and the Loliinae, the Broad-leaved (BL) and the Fine-leaved (FL) lineages, each containing different South American sublineages (Catalán & al., 2004, 2007; Catalán, 2006; Inda & al., 2008; Minaya & al., 2017; Moreno-Aguilar & al., 2020). Cytogenetic works have shown that all Southern Hemisphere Festuca species analyzed so far are polyploids (Dubcovsky & Martínez, 1992; Catalán, 2006; Šmarda & Stančík, 2006); however, a large number of Festuca species from South America have not been studied chromosomally yet. Here we report new chromosome counts for four Festuca species from the Ecuadorian paramos: Festuca caldasii (Kunth) Kunth is a tetraploid with 2n = 28 chromosomes, whereas F. andicola Kunth, F. chimborazensis subsp. micacochensis Stančík and F. subulifolia Benth. are hexaploids with 2n = 42 chromosomes. The chromosomal study was performed following the protocol of Jenkins & Hasterok (2007). Chromosome counting was performed in two to five metaphasic cells per individual using DAPI-stained meristematic root cells; the staining was performed with the DAPI fluorescent marker (4′, 6-diamino-2-phenylindole), and counting was done using a Motic BA410 fluorescence microscope. Chromosome numbers of F. caldasii and F. chimborazensis subsp. micacochensis are given here for the first time. The chromosome-based hexaploid level detected in F. chimborazensis subsp. micacochensis agrees with its inferred ploidy from genetic analysis of nuclear genes (Díaz-Pérez & al., 2014). Šmarda & Stančík (2006) reported different chromosome numbers and ploidy levels for F. andicola and F. subulifolia (tetraploids with 2n = 28); thus, our chromosome data provide new ploidy levels for these species. LITERATURE CITED Catalán, P. 2006. Phylogeny and evolution of Festuca L. and related genera of subtribe Loliinae (Poeae, Poaceae). Pp. 255–303 in: Sharma, A.K. & Sharma, A. (eds.), Plant genome: Biodiversity and evolution, vol. 1(D). Enfield: Science Publishers. Catalán, P., Torrecilla, P., López Rodríguez, J.Á. & Olmstead, R.G. 2004. Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences. Molec. Phylogen. Evol. 31: 517–541. https://doi.org/10.1016/j.ympev.2003.08.025 Catalán, P., Torrecilla, P., López-Rodríguez, J., Müller, J. & Stace, C. 2007. A systematic approach to subtribe Loliinae (Poaceae: Pooideae) based on phylogenetic evidence. Aliso 23: 380–405. https://doi.org/10.5642/aliso.20072301.31 Díaz-Pérez, A.J., Sharifi-Tehrani, M., Inda, L.A. & Catalán, P. 2014. Polyphyly, gene-duplication and extensive allopolyploidy framed the evolution of the ephemeral Vulpia grasses and other fine-leaved Loliinae (Poaceae). Molec. Phylogen. Evol. 79: 92–105. https://doi.org/10.1016/j.ympev.2014.06.009 Dubcovsky, J. & Martínez, A. 1992. Distribución geográfica de los niveles de ploidía en Festuca. Parodiana 7: 91–99. Inda, L.A., Segarra-Moragues, J.G., Müller, J., Peterson, P.M. & Catalán, P. 2008. Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the Northern and Southern Hemispheres. Molec. Phylogen. Evol. 46: 932–957. https://doi.org/10.1016/j.ympev.2007.11.022 Jenkins, G. & Hasterok, R. 2007. BAC “landing” on chromosomes of Brachypodium distachyon for comparative genome alignment. Nature Protoc. 2: 88–98. https://doi.org/10.1038/nprot.2006.490 Minaya, M., Hackel, J., Namaganda, M., Brochmann, C., Vorontsova, M.S., Besnard, G. & Catalán, P. 2017. Contrasting dispersal histories of broad- and fine-leaved temperate Loliinae grasses: Range expansion, founder events, and the roles of distance and barriers. J. Biogeogr. 44: 1980–1993. https://doi.org/10.1111/jbi.13012 Moreno-Aguilar, M.F., Arnelas, I., Sánchez-Rodríguez, A., Viruel, J. & Catalán, P. 2020. Museomics unveil the phylogeny and biogeography of the neglected Juan Fernandez Archipelago Megalachne and Podophorus endemic grasses and their connection with relict Pampean-Ventanian fescues. Frontiers Pl. Sci. (Online journal) 11: 819. https://doi.org/10.3389/fpls.2020.00819 Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858. https://doi.org/10.1038/35002501 Sklenář, P. & Ramsay, P.M. 2001. Diversity of zonal paramo plant communities in Ecuador. Diversity & Distrib. 7: 113–124. https://doi.org/10.1046/j.1472-4642.2001.00101.x Šmarda, P. & Stančík, D. 2006. Ploidy level variability in South American fescues (Festuca L., Poaceae): Use of flow cytometry in up to 5 1/2-year-old caryopses and herbarium specimens. Pl. Biol. 8: 73–80. https://doi.org/10.1055/s-2005-872821 Stančík, D. 2004. New taxa of Festuca (Poaceae) from Ecuador. Folia Geobot. 39: 97–110. https://doi.org/10.1007/BF02803266 Stančík, D. & Peterson, P.M. 2007. A revision of Festuca (Poaceae: Loliinae) in South American paramos. Contr. U.S. Natl. Herb. 56: 1–184. * Address for correspondence: [email protected] * First chromosome count for the species. *Dipteryx lacunifera Ducke 2n = 16, CHN. Brazil, Piauí, Bom Jesus, 09°04′57.2″S, 44°19′41.8″W, 298 m, 7 Dec 2021, S.C. Silva & M. Lenara (TEPB 205). [Fig. 4] The genus Dipteryx Schreb. belongs to the tropical tribe Dipterygeae Polhill, family Leguminosae-Papilionoideae, and it comprises ~12 species dispersed through South and Central America (Ducke, 1948). The species commonly contains chemical compounds as coumarins, isoflavones, triterpenoids, fatty acids and furanocassan diterpenoids (Nakano & Suárez, 1970; Nakano & al., 1979; Godo

Referência(s)