
Genome Sequence Resources of Colletotrichum abscissum , the Causal Agent of Citrus Post-Bloom Fruit Drop, and the Closely Related Species C. filicis
2022; American Phytopathological Society; Volume: 113; Issue: 1 Linguagem: Inglês
10.1094/phyto-05-22-0176-a
ISSN1943-7684
AutoresEduardo Henrique Goulin, Thaís Regina Boufleur, Francesca Negrini, Greice Amaral Carneiro, Elena Baraldi, Marcos Antônio Machado, Gaëtan Le Floch, Riccardo Baroncelli,
Tópico(s)Plant Pathogenic Bacteria Studies
ResumoHomePhytopathology®Vol. 113, No. 1Genome Sequence Resources of Colletotrichum abscissum, the Causal Agent of Citrus Post-Bloom Fruit Drop, and the Closely Related Species C. filicis PreviousNext Resource Announcement OPENOpen Access licenseGenome Sequence Resources of Colletotrichum abscissum, the Causal Agent of Citrus Post-Bloom Fruit Drop, and the Closely Related Species C. filicisEduardo Goulin, Thais Regina Boufleur, Francesca Negrini, Greice Amaral Carneiro, Elena Baraldi, Marcos Antonio Machado, Gaetan Le Floch, and Riccardo BaroncelliEduardo GoulinCentro de Citricultura Sylvio Moreira/IAC, Cordeiropolis, São Paulo, BrazilInstituto Federal de Educação, Ciência e Tecnologia de Santa Catarina–IFSC–Canoinhas, Santa Catarina, Brazil, Thais Regina BoufleurDepartment of Phytopathology and Nematology at the Escola Superior de Agricultura Luiz de Queiroz (ESALQ)–University of São Paulo (USP), Piracicaba, São Paulo, Brazil, Francesca NegriniDepartment of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 44, 40126 Bologna, Italy, Greice Amaral CarneiroDepartment of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 44, 40126 Bologna, Italy, Elena BaraldiDepartment of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 44, 40126 Bologna, Italy, Marcos Antonio MachadoCentro de Citricultura Sylvio Moreira/IAC, Cordeiropolis, São Paulo, Brazil, Gaetan Le FlochINRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Univ Brest, F-29280 Plouzané, France, and Riccardo Baroncelli†Corresponding author: R. Baroncelli; E-mail Address: [email protected]https://orcid.org/0000-0002-5878-1159Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 44, 40126 Bologna, ItalyAffiliationsAuthors and Affiliations Eduardo Goulin1 2 Thais Regina Boufleur3 Francesca Negrini4 Greice Amaral Carneiro4 Elena Baraldi4 Marcos Antonio Machado1 Gaetan Le Floch5 Riccardo Baroncelli4 † 1Centro de Citricultura Sylvio Moreira/IAC, Cordeiropolis, São Paulo, Brazil 2Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina–IFSC–Canoinhas, Santa Catarina, Brazil 3Department of Phytopathology and Nematology at the Escola Superior de Agricultura Luiz de Queiroz (ESALQ)–University of São Paulo (USP), Piracicaba, São Paulo, Brazil 4Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 44, 40126 Bologna, Italy 5INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Univ Brest, F-29280 Plouzané, France Published Online:20 Dec 2022https://doi.org/10.1094/PHYTO-05-22-0176-AAboutSectionsPDF ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InRedditEmailWechat Genome AnnouncementColletotrichum is one of the most diverse and destructive plant pathogenic fungi containing genus, responsible for significant losses in agriculture and forest plants. In the present study, we present the draft whole-genome sequence of two closely related species belonging to the Colletotrichum acutatum species complex: C. abscissum, the causal agent of citrus post-bloom fruit drop and C. filicis, a rare species described to accommodate an isolate obtained from an identified fern in Costa Rica. The data resources presented here will provide insights into genetic elements associated with citrus post-bloom fruit drop and into the evolution of Colletotrichum.Colletotrichum species are associated with a broad range of plant diseases, generally referred to anthracnose. Virtually every cultivated plant grown in the world is susceptible to one or more species of Colletotrichum and it has been considered scientifically and economically one of the most important groups of plant pathogenic fungi (Dean et al. 2012). Colletotrichum comprises more than 257 species listed and grouped into 15 species complexes; among those, the C. acutatum species complex, which is composed of a diverse and relatively closely related group of plant pathogenic fungi within the genus, and hence it was suggested as a model system to study evolution and host specialization in plant pathogens (Baroncelli et al. 2017).C. abscissum is the causal agent of citrus post-bloom fruit drop (Crous et al. 2015). The fungus is restricted to Citrus spp. (Rutaceae) and Psidium spp. in the American continent (Bragança et al. 2016; Crous et al. 2015; Talhinhas and Baroncelli 2021). C. abscissum strain Ca142 (also named LGMF1258) was obtained from blossom blight symptoms of sweet orange (Citrus sinensis) petal collected in a commercial orchard in Santa Cruz do Rio Pardo, São Paulo, Brazil. Pathogenicity of C. abscissum strain Ca142 was confirmed in vivo and in vitro experiments (Goulin et al. 2019). The strain described here is available at the Plant Pathogenic Fungi Collection of the Department of Phytopathology and Nematology (Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil).C. filicis is a newly described fungal species to accommodate an isolate (CBS 101611: ex-type culture) obtained from an unidentified fern (Pteridophyta) in Costa Rica (Crous et al. 2021). There are no other reports of this fungus worldwide, and other species of Colletotrichum were reported from ferns in Costa Rica, raising serious concern about the conservation status of C. filicis (Talhinhas and Baroncelli 2021). The strain was retrieved and is maintained in the culture collection of the Westerdijk Fungal Biodiversity Institute.Both strains (C. abscissum Ca142 and C. filicis CBS 101611) were grown in potato dextrose agar medium (Merk), over the cellophane membrane, at 28°C for 3 days. The mycelium was harvested with a sterile spatula, placed in a mortar, and ground with liquid nitrogen and a pestle into fine powders. The genomic DNA was extracted following the Raeder and Broda method (Raeder and Broda 1985), precipitated with 2-propanol, washed in ethanol (70%), dried, and dissolved in Milli-Q water. The treatment with RNase was conducted before the precipitation process. The quality of DNA extracted was evaluated by agarose gel electrophoresis and its concentration was measured with an ND-1000 UV-Vis spectrophotometer (NanoDrop, Thermo Scientific).Genomic DNA libraries were constructed using the NEB Ultra II DNA Library Prep Kit and sequenced 300PE on an Illumina MiSeq sequencer (Illumina Inc., San Diego, CA). The quality of the sequences was checked on FastQC v0.11.7 (Andrews 2010) and low-quality reads and adaptors were trimmed with Trimmomatic v0.33 (Bolger et al. 2014). De novo assemblies were performed with SPAdes v3.11.1 (Bankevich et al. 2012). Low coverage scaffolds were identified and removed while scaffolds belonging to mtDNA and rRNA clusters were identified and masked. The assembly completeness was assessed based on the sordariomyceta_odb9 lineage dataset using BUSCO v.3 (Simão et al. 2015); for both genomes, the final score value was above 98% (Table 1). The nuclear genome of C. abscissum Ca142 consists of 423 scaffolds, with a total assembly length of 54.00 Mbp (N50 = 321,765 and L50 = 46), 51.10% GC-content, and a maximum scaffold size of 2,556,205 bp. The nuclear genome of C. filicis CBS 101611 consists of 367 scaffolds, with a total assembly length of 62.97 Mbp (N50 = 325,017 and L50 = 60), 46.00% GC-content, and a maximum scaffold size of 1,547,318 bp (Table 1).Table 1. Summary statistics of Colletotrichum abscissum and C. filicis genomesStatisticsVariablesC. abscissumC. filicisCulture collectionLGMF1258CBS101611Average coverage210×115×Number of scaffolds423367Total assembly length (mb)54.0062.97Scaffold N50 (bp)321,765325,017Scaffold L50 (bp)4660GC (%)51.1046.00BUSCO completeness (%)98.7098.90Number of predicted genes15,49917,391Secreted proteins2,0202,096Biosynthetic gene clusters5957Genome accessionSDAQ00000000.1MOOC00000000.1Table 1. Summary statistics of Colletotrichum abscissum and C. filicis genomesView as image HTML MAKER 3.01.02 pipeline (Holt and Yandell 2011) was used for gene annotation as described by Baroncelli et al. (2016). Available transcriptomic data of C. abscissum Ca142 were used to train Augustus v2.5.5 (Stanke et al. 2006) and as biological evidence in MAKER3, while GeneMark-ES v4.48 (Borodovsky and Lomsadze 2011) was used for ab initio gene prediction. Overall, 15,499 and 17,391 protein-coding gene models were predicted in the nuclear genome of C. abscissum and C. filicis, respectively. SignalP v5.0 (Almagro Armenteros et al. 2019) revealed that 2,020 and 2,096 predicted proteins in C. abscissum Ca142 and C. filicis CBS 101611, respectively, contain a secretion signal peptide. EffectorP v3.0 (Sperschneider and Dodds 2022) was used to predict secreted effector candidates. Overall, 640 and 711 proteins in C. abscissum and C. filicis, respectively, might be putatively involved in fungal pathogenicity. Secondary metabolite biosynthetic gene clusters (BGCs) were predicted with antiSMASH v6.1.1 (Blin et al. 2021) using a relaxed detection strictness. In total, 59 and 57 BGCs were identified in the genome of C. abscissum and C. filicis, respectively, of which 55 syntenic between the two species (Goulin et al. 2022).A comparative analysis of the newly sequenced genomes with those of other members of the acutatum complex, publicly available, revealed that genome features of C. abscissum and C. filicis are similar to those of closely related species (Fig. 1) (Baroncelli et al. 2014, 2016, 2018, 2021; Huo et al. 2021).Fig. 1. Comparative genomics of species belonging to the Colletotrichum acutatum species complex. On the left, the phylogenomic tree was performed with FastTree v 2.1.11 (Price et al. 2010) based on 8,140 single copy orthologue sequences (5,206,550 characters) identified with Orthofinder v 2.5.4 (Emms and Kelly 2019). Bar chart reports the number of protein-coding genes for each genome (not secreted predicted protein in darkest gray, secreted proteins not predicted to be candidate effectors in orange (medium gray), and candidate effectors in yellow (light gray)).Download as PowerPointIn this study, we provide draft genome sequences of C. abscissum and C. filicis. To our knowledge, these are the first available genomes for C. abscissum and C. filicis. These genomes will provide a new useful resource for future research on citrus post-bloom fruit drop and comparative genomic studies of the genus Colletotrichum.Data AvailabilityThe Whole-Genome Shotgun projects have been deposited in GenBank under the accession numbers SDAQ00000000 (C. abscissum, BioProject PRJNA516018, BioSample SAMN10780915) and MOOC00000000 (C. filicis, BioProject PRJNA350378, BioSample SAMN05938703).The author(s) declare no conflict of interest.Literature CitedAlmagro Armenteros, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S., von Heijne, G., and Nielsen, H. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37:420-423. https://doi.org/10.1038/s41587-019-0036-z Crossref, Medline, ISI, Google ScholarAndrews, S. 2010. FastQC a quality control tool for high throughput sequence data. Babraham Bioinformatics. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Google ScholarBankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., and Pevzner, P. A. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19:455-477. https://doi.org/10.1089/cmb.2012.0021 Crossref, Medline, ISI, Google ScholarBaroncelli, R., Amby, D. B., Zapparata, A., Sarrocco, S., Vannacci, G., Le Floch, G., Harrison, R. J., Holub, E., Sukno, S. A., Sreenivasaprasad, S., and Thon, M. R. 2016. Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum. BMC Genom. 17:555. https://doi.org/10.1186/s12864-016-2917-6 Crossref, Medline, ISI, Google ScholarBaroncelli, R., Pensec, F., Da Lio, D., Boufleur, T., Vicente, I., Sarrocco, S., Picot, A., Baraldi, E., Sukno, S., Thon, M., and Le Floch, G. 2021. Complete genome sequence of the plant-pathogenic fungus Colletotrichum lupini. Mol. Plant-Microbe Interact. 34:1461-1464. https://doi.org/10.1094/MPMI-07-21-0173-A Link, ISI, Google ScholarBaroncelli, R., Sreenivasaprasad, S., Sukno, S. A., Thon, M. R., and Holub, E. 2014. Draft genome sequence of Colletotrichum acutatum sensu lato (Colletotrichum fioriniae). Genome Announc. 2:e00112-14-e00112-14. https://doi.org/10.1128/genomeA.00112-14 Crossref, Google ScholarBaroncelli, R., Sukno, S. A., Sarrocco, S., Cafà, G., Le Floch, G., and Thon, M. R. 2018. Whole-genome sequence of the orchid anthracnose pathogen Colletotrichum orchidophilum. Mol. Plant-Microbe Interact. 31:979-981. https://doi.org/10.1094/MPMI-03-18-0055-A Link, ISI, Google ScholarBaroncelli, R., Talhinhas, P., Pensec, F., Sukno, S. A., Le Floch, G., and Thon, M. R. 2017. The Colletotrichum acutatum species complex as a model system to study evolution and host specialization in plant pathogens. Front Microbiol. 8:1-7. https://doi.org/10.3389/fmicb.2017.02001 Crossref, Medline, ISI, Google ScholarBlin, K., Shaw, S., Kloosterman, A. M., Charlop-Powers, Z., van Wezel, G. P., Medema, M. H., and Weber, T. 2021. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 49:W29-W35. https://doi.org/10.1093/nar/gkab335 Crossref, Medline, ISI, Google ScholarBolger, A. M., Lohse, M., and Usadel, B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120. https://doi.org/10.1093/bioinformatics/btu170 Crossref, Medline, ISI, Google ScholarBorodovsky, M., and Lomsadze, A. 2011. Eukaryotic gene prediction using GeneMark.hmm-E and GeneMark-ES. Curr. Protoc. Bioinformatics 35:4.6.1-4.6.10. https://doi.org/10.1002/0471250953.bi0406s35 Google ScholarBragança, C. A. D., Damm, U., Baroncelli, R., Massola Júnior, N. S., and Crous, P. W. 2016. Species of the Colletotrichum acutatum complex associated with anthracnose diseases of fruit in Brazil. Fungal Biol. 120:547-561. https://doi.org/10.1016/j.funbio.2016.01.011 Crossref, Medline, ISI, Google ScholarCrous, P. W., Cowan, D. A., Maggs-Kölling, G., Yilmaz, N., Thangavel, R., Wingfield, M. J., Noordeloos, M. E., Dima, B., Brandrud, T. E., Jansen, G. M., Morozova, O. V., Vila, J., Shivas, R. G., Tan, Y. P., Bishop-Hurley, S., Lacey, E., Marney, T. S., Larsson, E., Le Floch, G., Lombard, L., Nodet, P., Hubka, V., Alvarado, P., Berraf-Tebbal, A., Reyes, J. D., Delgado, G., Eichmeier, A., Jordal, J. B., Kachalkin, A. V., Kubátová, A., Maciá-Vicente, J. G., Malysheva, E. F., Papp, V., Rajeshkumar, K. C., Sharma, A., Sharma, A., Spetik, M., Szabóová, D., Tomashevskaya, M. A., Abad, J. A., Abad, Z. G., Alexandrova, A. V., Anand, G., Arenas, F., Ashtekar, N., Balashov, S., Bañares, Á., Baroncelli, R., Bera, I., Yu. Biketova, A., Blomquist, C. L., Boekhout, T., Boertmann, D., Bulyonkova, T. M., Burgess, T. I., Carnegie, A. J., Cobo-Diaz, J. F., Corriol, G., Cunnington, J. H., Da Cruz, M. O., Damm, U., Davoodian, N., Desantiago, A., Dearnaley, J., De Freitas, L. W. S., Dhileepan, K., Dimitrov, R., Di Piazza, S., Fatima, S., Fuljer, F., Galera, H., Ghosh, A., Giraldo, A., Glushakova, A. M., Gorczak, M., Gouliamova, D. E., Gramaje, D., Groenewald, M., Gunsch, C. K., Gutiérrez, A., Holdom, D., Houbraken, J., Ismailov, A. B., Istel, Ł., Iturriaga, T., Jeppson, M., Jurjević, Ž., Kalinina, L. B., Kapitonov, V. I., Kautmanová, I., Khalid, A. N., Kiran, M., Kiss, L., Kovács, Á., Kurose, D., Kušan, I., Lad, S., Læssøe, T., Lee, H. B., Luangsa-Ard, J. J., Lynch, M., Mahamedi, A. E., Malysheva, V. F., Mateos, A., Matočec, N., Mešić, A., Miller, A. N., Mongkolsamrit, S., Moreno, G., Morte, A., Mostowfizadeh-Ghalamfarsa, R., Naseer, A., Navarro-Ródenas, A., Nguyen, T. T. T., Noisripoom, W., Ntandu, J. E., Nuytinck, J., Ostrý, V., Pankratov, T. A., Pawłowska, J., Pecenka, J., Pham, T. H. G., Polhorský, A., Pošta, A., Raudabaugh, D. B., Reschke, K., Rodríguez, A., Romero, M., Rooney-Latham, S., Roux, J., Sandoval-Denis, M., Smith, M. T., Steinrucken, T. V., Svetasheva, T. Y., Tkalčec, Z., Van Der Linde, E. J., Vegte, M. V. D., Vauras, J., Verbeken, A., Visagie, C. M., Vitelli, J. S., Volobuev, S. V., Weill, A., Wrzosek, M., Zmitrovich, I. V., Zvyagina, E. A., and Groenewald, J. Z. 2021. Fungal planet description sheets: 1182-1283. Pers.: Mol. Phylogeny Evol. Fungi 46:313-528. Google ScholarCrous, P. W., Wingfield, M. J., Guarro, J., Hernández-Restrepo, M., Sutton, D. A., Acharya, K., Barber, P. A., Boekhout, T., Dimitrov, R. A., Dueñas, M., Dutta, A. K., Gené, J., Gouliamova, D. E., Groenewald, M., Lombard, L., Morozova, O. V., Sarkar, J., Smith, M. T. H., Stchigel, A. M., Wiederhold, N. P., Alexandrova, A. V., Antelmi, I., Armengol, J., Barnes, I., Cano-Lira, J. F., Ruiz, R. F. C., Contu, M., Courtecuisse, P. R., Silveira, A. L., Decock, C. A., de Goes, A., Edathodu, J., Ercole, E., Firmino, A. C., Fourie, A., Fournier, J., Furtado, E. L., Geering, A. D. W., Gershenzon, J., Giraldo, A., Gramaje, D., Hammerbacher, A., He, X.-L., Haryadi, D., Khemmuk, W., Kovalenko, A. E., Krawczynski, R., Laich, F., Lechat, C., Lopes, U. P., Madrid, H., Malysheva, E. F., Marín-Felix, Y., Martín, M. P., Mostert, L., Nigro, F., Pereira, O. L., Picillo, B., Pinho, D. B., Popov, E. S., Peláez, R., C., A., Rooney-Latham, S., Sandoval-Denis, M., Shivas, R. G., Silva, V., Stoilova-Disheva, M. M., Telleria, M. T., Ullah, C., Unsicker, S. B., van der Merwe, N. A., Vizzini, A., Wagner, H.-G., Wong, P. T. W., Wood, A. R., and Groenewald, J. Z. 2015. Fungal planet description sheets: 320–370. Pers.: Mol. Phylogeny Evol. Fungi 34:167-266. https://doi.org/10.3767/003158515X688433 Crossref, Google ScholarDean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., and Foster, G. D. 2012. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x Crossref, Medline, ISI, Google ScholarEmms, D. M., and Kelly, S. 2019. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 20:238. https://doi.org/10.1186/s13059-019-1832-y Crossref, Medline, ISI, Google ScholarGoulin, E., Boufleur, T. R., Negrini, F., Carneiro, G. A., Baraldi, E., Machado, M. A., et al. 2022. Genome sequence resources of Colletotrichum abscissum the causal agent of citrus post-bloom fruit drop and the closely related species C. filicis. figshare. Dataset. https://doi.org/10.6084/m9.figshare.20286567.v1 Google ScholarGoulin, E. H., dos Santos, P. J. C., Dalio, R. D., and Machado, M. A. 2019. In vitro symptom induction of Colletotrichum abscissum infection in detached sweet orange flowers. J. Plant Pathol. 101:695-699. https://doi.org/10.1007/s42161-018-00220-3 Crossref, ISI, Google ScholarHolt, C., and Yandell, M. 2011. MAKER2: An annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinform. 12:491. https://doi.org/10.1186/1471-2105-12-491 Crossref, Medline, ISI, Google ScholarHuo, J., Wang, Y., Hao, Y., Yao, Y., Wang, Y., Zhang, K., Tan, X., Li, Z., and Wang, W. 2021. Genome sequence resource for Colletotrichum scovillei, the cause of anthracnose disease of chili. Mol. Plant-Microbe Interact. 34:122-126. https://doi.org/10.1094/MPMI-03-20-0055-A Link, ISI, Google ScholarPrice, M. N., Dehal, P. S., and Arkin, A. P. 2010. FastTree 2–Approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. https://doi.org/10.1371/journal.pone.0009490 Crossref, Medline, ISI, Google ScholarRaeder, U., and Broda, P. 1985. Rapid preparation of DNA from filamentous fungi. Lett. Appl. Microbiol. 1:17-20. https://doi.org/10.1111/j.1472-765X.1985.tb01479.x Crossref, ISI, Google ScholarSimão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., and Zdobnov, E. M. 2015. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210-3212. https://doi.org/10.1093/bioinformatics/btv351 Crossref, Medline, ISI, Google ScholarSperschneider, J., and Dodds, P. N. 2022. EffectorP 3.0: Prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. Mol. Plant-Microbe Interact. 35:146-156. https://doi.org/10.1094/MPMI-08-21-0201-R Link, ISI, Google ScholarStanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., and Morgenstern, B. 2006. AUGUSTUS: Ab initio prediction of alternative transcripts. Nucleic Acids Res. 34:W435-W439. https://doi.org/10.1093/nar/gkl200 Crossref, Medline, ISI, Google ScholarTalhinhas, P., and Baroncelli, R. 2021. Colletotrichum species and complexes: Geographic distribution, host range and conservation status. Fungal Divers. 110:109-198. https://doi.org/10.1007/s13225-021-00491-9 Crossref, ISI, Google ScholarFunding: Support was provided by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; grants 2012/23381-7, 2008/57909-2, and 2014/50880-0) and The Instituto Nacional de Ciência e Tecnologia de Genômica para o melhoramento de Citros (INCT Citros; grants CNPq 573848/2008-4 and CNPq 465440/2014-2). T. Boufleur was supported by a FAPESP scholarship (2021/01606-6).The author(s) declare no conflict of interest.DetailsFiguresLiterature CitedRelated Vol. 113, No. 1 January 2023SubscribeISSN:0031-949Xe-ISSN:1943-7684 DownloadCaptionLeaf deformation, tip necrosis and twisting, and overall stunting 28 days after agroinfiltration of tobacco, Nicotiana occidentalis, with blueberry virus S (Villamor et al.). Photo credit: Dan Villamor Metrics Article History Issue Date: 25 Jan 2023 Published: 20 Dec 2022 Accepted: 2 Aug 2022 Pages: 104-107 Information© 2022 The American Phytopathological SocietyFunding Fundação de Amparo à Pesquisa do Estado de São PauloGrant/Award Number: 2012/23381-7Grant/Award Number: 2008/57909-2Grant/Award Number: 2014/50880-0Grant/Award Number: 2021/01606-6 Instituto Nacional de Ciência e Tecnologia de Genômica para o melhoramento de CitrosGrant/Award Number: CNPq 573848/2008-4Grant/Award Number: CNPq 465440/2014-2 Keywordsgenomicsplant-pathogenic funguspost-bloom fruit dropThe author(s) declare no conflict of interest.PDF download
Referência(s)