Artigo Acesso aberto Produção Nacional Revisado por pares

DFT Calculations for Structural, Electronic, and Magnetic Properties of ZnFe2O4 Spinel Oxide: The Role of Exchange-Correlation Functional

2022; Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímer; Volume: 25; Linguagem: Inglês

10.1590/1980-5373-mr-2022-0219

ISSN

1980-5373

Autores

Anivaldo Ferreira de Rezende, Marisa C. Oliveira, Renan Augusto Pontes Ribeiro, Weber Duarte Mesquita, Jakelini de Jesus Marques, Nilva Fernanda dos Santos Magalhães, Jorge Henrique Vieira Lemes, E. Longo, Maria Fernanda do Carmo Gurgel,

Tópico(s)

Multiferroics and related materials

Resumo

In this study, quantum-mechanical calculations in the framework of the Density Functional Theory (DFT) were performed to investigate the role of exchange-correlation functional in describing structural, electronic, and magnetic properties of ZnFe2O4. Herein B3LYP, PBE0, B1WC, and WC1LYP functionals implemented in the CRYSTAL17 code were considered due to the different amounts of the exact Hartree-Fock exchange fraction. In particular, the role of HF fraction on ZnFe2O4 properties was addressed for the first time. Indeed, structural, electronic, and magnetic properties indicate the dependence upon the exchange fraction, where WC1LYP with a 16% exact HF exchange exhibits the best performance compared to the other hybrid functionals. The obtained results reveal an excellent agreement for bandgap, local magnetic moment, long-range magnetic ordering, and unit-cell lattice parameters, overcoming previous theoretical studies based on local/semilocal exchange-correlation treatments. These results confirm the importance of hybrid HF/DFT with controlled HF term contribution to describe the essential features of strongly correlated materials.

Referência(s)
Altmetric
PlumX