Phylogenetics and the Cenozoic radiation of lampreys
2022; Elsevier BV; Volume: 33; Issue: 2 Linguagem: Inglês
10.1016/j.cub.2022.12.018
ISSN1879-0445
AutoresChase Doran Brownstein, Thomas J. Near,
Tópico(s)Evolution and Paleontology Studies
ResumoThe development of a movable jaw is one of the most important transitions in the evolutionary history of animals. 1 Brazeau M.D. Friedman M. The origin and early phylogenetic history of jawed vertebrates. Nature. 2015; 520: 490-497 Crossref PubMed Scopus (124) Google Scholar Jawed vertebrates rapidly diversified after appearing approximately 470 million years ago. Today, only lampreys and hagfishes represent the once dominant jawless grade 2 Janvier P. Early jawless vertebrates and cyclostome origins. Zoolog. Sci. 2008; 25: 1045-1056 Crossref PubMed Scopus (59) Google Scholar ,3 Anderson P.S.L. Friedman M. Brazeau M.D. Rayfield E.J. Initial radiation of jaws demonstrated stability despite faunal and environmental change. Nature. 2011; 476: 206-209 Crossref PubMed Scopus (107) Google Scholar ,4 Donoghue P.C.J. Keating J.N. Early vertebrate evolution. Palaeontology. 2014; 57: 879-893https://doi.org/10.1111/pala.12125 Crossref Scopus (46) Google Scholar and comprise less than 1% of living vertebrate species. Their relationship to other vertebrates ranks among the more contentious problems in animal phylogenetics. 5 Hardisty M.W. Lampreys and hagfishes: analysis of cyclostome relationships. in: Hardisty M.W. Potter I.C. The biology of lampreys. Academic Press, 1982: 165-260 Google Scholar ,6 Yalden D.W. Feeding mechanisms as evidence for cyclostome monophyly. Zool. J. Linn. Soc. 1985; 84: 291-300 Crossref Scopus (71) Google Scholar ,7 Kuraku S. Hoshiyama D. Katoh K. Suga H. Miyata T. Monophyly of lampreys and hagfishes supported by nuclear DNA-coded genes. J. Mol. Evol. 1999; 49: 729-735 Crossref PubMed Scopus (103) Google Scholar ,8 Stock D.W. Whitt G.S. Evidence from 18S ribosomal RNA sequence that lampreys and hagfishes form a natural group. Science. 1992; 257: 787-789 Crossref PubMed Scopus (136) Google Scholar ,9 Delarbre C. Escriva H. Gallut C. Barriel V. Kourilsky P. Janvier P. Laudet V. Gachelin G. The complete nucleotide sequence of the mitochondrial DNA of the agnathan Lampetra fluviatilis: Bearings on the phylogeny of cyclostomes. Mol. Biol. Evol. 2000; 17: 519-529 Crossref PubMed Scopus (45) Google Scholar ,10 Near T.J. Conflict and resolution between phylogenies inferred from molecular and phenotypic data sets for hagfish, lampreys, and gnathostomes. J. Exp. Zool. B Mol. Dev. Evol. 2009; 312: 749-761 Crossref PubMed Scopus (37) Google Scholar ,11 Heimberg A.M. Cowper-Sallari R. Sémon M. Donoghue P.C.J. Peterson K.J. microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc. Natl. Acad. Sci. USA. 2010; 107: 19379-19383 Crossref PubMed Scopus (224) Google Scholar ,12 Miyashita T. Coates M.I. Farrar R. Larson P. Manning P.L. Wogelius R.A. Edwards N.P. Anné J. Bergmann U. Palmer A.R. Currie P.J. Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological–molecular conflict in early vertebrate phylogeny. Proc. Natl. Acad. Sci. USA. 2019; 116: 2146-2151https://doi.org/10.1073/pnas.1814794116 Crossref PubMed Scopus (71) Google Scholar Further, the phylogenetic relationships within lampreys and hagfishes remain unclear, 13 Gill H.S. Renaud C.B. Chapleau F. Mayden R.L. Potter I.C. Phylogeny of living parasitic lampreys (Petromyzontiformes) based on morphological data. Copeia. 2003; 2003: 687-703 Crossref Scopus (62) Google Scholar ,14 Lang N.J. Roe K.J. Renaud C.B. Gill H.S. Potter I.C. Freyhof J. Naseka A.M. Cochran P. Perez H.E. Habit E.M. et al. Novel relationships among lampreys (Petromyzontiformes) revealed by a taxonomically comprehensive molecular data set. Am. Fish. Soc. Symp. 2009; 72: 41-55 Google Scholar ,15 Fernholm B. Norén M. Kullander S.O. Quattrini A.M. Zintzen V. Roberts C.D. Mok H.-K. Kuo C.-H. Hagfish phylogeny and taxonomy, with description of the new genus Rubicundus (Craniata, Myxinidae). J. Zoolog. Syst. Evol. Res. 2013; 51: 296-307https://doi.org/10.1111/jzs.12035 Crossref Scopus (29) Google Scholar and the ages of their living lineages are largely unexplored. 16 Kuraku S. Kuratani S. Time scale for cyclostome evolution inferred with a phylogenetic diagnosis of hagfish and lamprey cDNA sequences. Zoolog. Sci. 2006; 23: 1053-1064 Crossref PubMed Scopus (152) Google Scholar ,17 Pereira A.M. Levy A. Vukić J. Šanda R. Levin B.A. Freyhof J. Geiger M. Choleva L. Francisco S.M. Robalo J.I. Putting European lampreys into perspective: A global-scale multilocus phylogeny with a proposal for a generic structure of the Petromyzontidae. J. Zool. Syst. Evol. Res. 2021; 59: 1982-1993https://doi.org/10.1111/jzs.12522 Crossref Scopus (5) Google Scholar Because of their importance for the genomic and developmental changes that prefigured jawed vertebrate diversity, 18 Green S.A. Bronner M.E. The lamprey: A jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits. Differentiation. 2014; 87: 44-51https://doi.org/10.1016/j.diff.2014.02.001 Crossref PubMed Scopus (46) Google Scholar ,19 McCauley D.W. Docker M.F. Whyard S. Li W. Lampreys as diverse model organisms in the genomics era. Bioscience. 2015; 65: 1046-1056https://doi.org/10.1093/biosci/biv139 Crossref PubMed Scopus (38) Google Scholar ,20 Xu Y. Zhu S.W. Li Q.W. Lamprey: a model for vertebrate evolutionary research. Zool. Res. 2016; 37: 263-269https://doi.org/10.13918/j.issn.2095-8137.2016.5.263 Crossref PubMed Scopus (28) Google Scholar ,21 York J.R. Lee E.M.-J. McCauley D.W. The lamprey as a model vertebrate in evolutionary developmental biology. in: Lampreys: Biology, Conservation and Control. Volume 2. Springer Netherlands, 2019: 481-526https://doi.org/10.1007/978-94-024-1684-8_6 Crossref Google Scholar the evolutionary history of lampreys and hagfishes is a major frontier of organismal biology. Of these two clades, lampreys 22 Fricke R. Eschmeyer W.N. Fong J.D. Eschmeyer's Catalog of Fishes: genera/species by family/subfamily. https://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.aspDate: 2022 Google Scholar are more ecologically diverse, exhibiting freshwater, anadromous, and fully marine forms, as well as parasitic and nonparasitic species. 23 Hardisty M.W. The biology of cyclostomes. Chapman and Hall, 1979 Crossref Google Scholar ,24 Hardisty M.W. Lampreys: Life without jaws. Forrest Text, 2006 Google Scholar Here, we present a new phylogeny and historical biogeographic reconstruction of all living lampreys. Whereas the early diversification of this clade tracks Pangaean fragmentation, lampreys also rapidly radiated in the northern hemisphere during the mid-Cretaceous and directly after the Cretaceous-Paleogene extinction. These radiations mirrored concurrent ones in other animals and plants and coincided with changes to lamprey ecology and feeding behavior. Our results suggest that 80% of living lamprey clades appeared in the last 20 million years of Earth history. Rather than gradually accumulating since the oldest stem-group forms appeared in the early Paleozoic, living lamprey biodiversity results from diversifications extending from the Cretaceous to present.
Referência(s)