Stepwise Engineering the Pore Aperture of a Cage‐like MOF for the Efficient Separation of Isomeric C4 Paraffins under Humid Conditions
2023; Wiley; Volume: 135; Issue: 11 Linguagem: Inglês
10.1002/ange.202218596
ISSN1521-3757
AutoresLu Wang, Wenjuan Xue, Hejin Zhu, Xiangyu Guo, Hongliang Huang, Chongli Zhong,
Tópico(s)Gas Sensing Nanomaterials and Sensors
ResumoAngewandte ChemieVolume 135, Issue 11 e202218596 Forschungsartikel Stepwise Engineering the Pore Aperture of a Cage-like MOF for the Efficient Separation of Isomeric C4 Paraffins under Humid Conditions Lu Wang, Lu Wang State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. China College of Chemical Engineering and Materials, Handan University, Handan, 056005 Hebei Province, P. R. ChinaSearch for more papers by this authorWenjuan Xue, Wenjuan Xue State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. China School of Chemical Engineering and Technology, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. ChinaSearch for more papers by this authorHejin Zhu, Hejin Zhu State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. ChinaSearch for more papers by this authorXiangyu Guo, Xiangyu Guo State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. China School of Chemical Engineering and Technology, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. ChinaSearch for more papers by this authorHongliang Huang, Corresponding Author Hongliang Huang [email protected] orcid.org/0000-0001-9690-9259 State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. China School of Chemical Engineering and Technology, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. ChinaSearch for more papers by this authorProf. Chongli Zhong, Corresponding Author Prof. Chongli Zhong [email protected] State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. China School of Chemical Engineering and Technology, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. ChinaSearch for more papers by this author Lu Wang, Lu Wang State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. China College of Chemical Engineering and Materials, Handan University, Handan, 056005 Hebei Province, P. R. ChinaSearch for more papers by this authorWenjuan Xue, Wenjuan Xue State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. China School of Chemical Engineering and Technology, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. ChinaSearch for more papers by this authorHejin Zhu, Hejin Zhu State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. ChinaSearch for more papers by this authorXiangyu Guo, Xiangyu Guo State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. China School of Chemical Engineering and Technology, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. ChinaSearch for more papers by this authorHongliang Huang, Corresponding Author Hongliang Huang [email protected] orcid.org/0000-0001-9690-9259 State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. China School of Chemical Engineering and Technology, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. ChinaSearch for more papers by this authorProf. Chongli Zhong, Corresponding Author Prof. Chongli Zhong [email protected] State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. China School of Chemical Engineering and Technology, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387 P. R. ChinaSearch for more papers by this author First published: 03 January 2023 https://doi.org/10.1002/ange.202218596Citations: 2Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The separation of isomeric C4 paraffins is an important task in the petrochemical industry, while current adsorbents undergo a trade-off relationship between selectivity and adsorption capacity. In this work, the pore aperture of a cage-like Zn-bzc (bzc=pyrazole-4-carboxylic acid) is tuned by the stepwise installation methyl groups on its narrow aperture to achieve both molecular-sieving separation and high n-C4H10 uptake. Notably, the resulting Zn-bzc-2CH3 (bzc-2CH3=3,5-dimethylpyrazole-4-carboxylic acid) can sensitively capture n-C4H10 and exclude iso-C4H10, affording molecular-sieving for n-C4H10/iso-C4H10 separation and high n-C4H10 adsorption capacity (54.3 cm3 g−1). Breakthrough tests prove n-C4H10/iso-C4H10 can be efficiently separated and high-purity iso-C4H10 (99.99 %) can be collected. Importantly, the hydrophobic microenvironment created by the introduced methyl groups greatly improves the stability of Zn-bzc and significantly eliminates the negative effect of water vapor on gas separation under humid conditions, indicating Zn-bzc-2CH3 is a new benchmark adsorbent for n-C4H10/iso-C4H10 separation. Conflict of interest The authors declare no conflict of interest. Open Research Data Availability Statement The data that support the findings of this study are available from the corresponding author upon reasonable request. Supporting Information As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Filename Description ange202218596-sup-0001-misc_information.pdf2.3 MB Supporting Information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1L. Yang, S. Qian, X. Wang, X. Cui, B. Chen, H. Xing, Chem. Soc. Rev. 2020, 49, 5359–5406. 10.1039/C9CS00756C CASPubMedWeb of Science®Google Scholar 2H. Wu, Q. Gong, D. H. Olson, J. Li, Chem. Rev. 2012, 112, 836–868. 10.1021/cr200216x CASPubMedWeb of Science®Google Scholar 3Z. R. Herm, E. D. Bloch, J. R. Long, Chem. Mater. 2014, 26, 323–338. 10.1021/cm402897c CASWeb of Science®Google Scholar 4K. Adil, Y. Belmabkhout, R. S. Pillai, A. Cadiau, P. M. Bhatt, A. H. Assen, G. Maurin, M. Eddaoudi, Chem. Soc. Rev. 2017, 46, 3402–3430. 10.1039/C7CS00153C CASPubMedWeb of Science®Google Scholar 5W. Fan, X. Zhang, Z. Kang, X. Liu, D. Sun, Coord. Chem. Rev. 2021, 443, 213968. 10.1016/j.ccr.2021.213968 CASWeb of Science®Google Scholar 6F. Hillman, M. R. A. Hamid, P. Krokidas, S. Moncho, E. N. Brothers, I. G. Economou, H. K. Jeong, Angew. Chem. Int. Ed. 2021, 60, 10103–10111; 10.1002/anie.202015635 CASPubMedWeb of Science®Google ScholarAngew. Chem. 2021, 133, 10191–10199. 10.1002/ange.202015635 Google Scholar 7S. Nandi, S. Collins, D. Chakraborty, D. Banerjee, P. K. Thallapally, T. K. Woo, R. Vaidhyanathan, J. Am. Chem. Soc. 2017, 139, 1734–1737. 10.1021/jacs.6b10455 CASPubMedWeb of Science®Google Scholar 8J. Y. Lee, D. H. Olson, L. Pan, T. J. Emge, J. Li, Adv. Funct. Mater. 2007, 17, 1255–1262. 10.1002/adfm.200600944 CASWeb of Science®Google Scholar 9T. L. Hu, H. Wang, B. Li, R. Krishna, W. Hui, Z. Wei, Y. Zhao, H. Yu, W. Xue, W. Zhu, Nat. Commun. 2015, 6, 7328. 10.1038/ncomms8328 CASPubMedWeb of Science®Google Scholar 10B. Li, X. Cui, D. O′Nolan, H. M. Wen, M. Jiang, R. Krishna, H. Wu, R. B. Lin, Y. S. Chen, D. Yuan, Adv. Mater. 2017, 29, 1704210. 10.1002/adma.201704210 CASWeb of Science®Google Scholar 11Z. B. Bao, J. W. Wang, Z. G. Zhang, H. B. Xing, Q. W. Yang, Y. W. Yang, H. Wu, R. Krishna, W. Zhou, B. L. Chen, Q. L. Ren, Angew. Chem. Int. Ed. 2018, 57, 16020–16025; 10.1002/anie.201808716 CASPubMedWeb of Science®Google ScholarAngew. Chem. 2018, 130, 16252–16257. 10.1002/ange.201808716 Google Scholar 12A. Cadiau, K. Adil, P. M. Bhatt, Y. Belmabkhout, M. Eddaoudi, Science 2016, 353, 137–140. 10.1126/science.aaf6323 CASPubMedWeb of Science®Google Scholar 13H. Wang, X. L. Dong, V. Colombo, Q. N. Wang, Y. Y. Liu, W. Liu, X. L. Wang, X. Y. Huang, D. M. Proserpio, A. Sironi, Y. Han, J. Li, Adv. Mater. 2018, 30, 1805088. 10.1002/adma.201805088 PubMedWeb of Science®Google Scholar 14M. H. Mohamed, Y. Yang, L. Li, S. Zhang, J. P. Ruffley, A. G. Jarvi, S. Saxena, G. Veser, J. K. Johnson, N. L. Rosi, J. Am. Chem. Soc. 2019, 141, 13003–13007. 10.1021/jacs.9b06582 CASPubMedWeb of Science®Google Scholar 15Z. Chen, L. Feng, L. Liu, P. M. Bhatt, K. Adil, A. H. Emwas, A. H. Assen, Y. Belmabkhout, Y. Han, M. Eddaoudi, Langmuir 2018, 34, 14546–14551. 10.1021/acs.langmuir.8b03085 CASPubMedWeb of Science®Google Scholar 16Z. Zhang, B. Tan, P. Wang, X. Cui, H. Xing, AIChE J. 2020, 66, e16236. 10.1002/aic.16236 CASWeb of Science®Google Scholar 17B. Li, Y. Belmabkhout, Y. Zhang, P. M. Bhatt, H. He, D. Zhang, Y. Han, M. Eddaoudi, J. A. Perman, S. Ma, Chem. Commun. 2016, 52, 13897–13900. 10.1039/C6CC08008A CASPubMedWeb of Science®Google Scholar 18H. Zeng, M. Xie, T. Wang, R. J. Wei, X. J. Xie, Y. Zhao, W. Lu, D. Li, Nature 2021, 595, 542–548. 10.1038/s41586-021-03627-8 CASPubMedWeb of Science®Google Scholar 19P. Z. Sun, M. Yagmurcukardes, R. Zhang, W. J. Kuang, M. Lozada-Hidalgo, B. L. Liu, H. M. Cheng, F. C. Wang, F. M. Peeters, I. V. Grigorieva, A. K. Geim, Nat. Commun. 2021, 12, 7170. 10.1038/s41467-021-27347-9 CASPubMedWeb of Science®Google Scholar 20A. H. Assen, Y. Belmabkhout, K. Adil, P. M. Bhatt, D. X. Xue, H. Jiang, M. Eddaoudi, Angew. Chem. Int. Ed. 2015, 54, 14353–14358; 10.1002/anie.201506345 CASPubMedWeb of Science®Google ScholarAngew. Chem. 2015, 127, 14561–14566. 10.1002/ange.201506345 Google Scholar 21Z. M. Ye, X. W. Zhang, P. Q. Liao, Y. Xie, Y. T. Xu, X. F. Zhang, C. Wang, D. X. Liu, N. Y. Huang, Z. H. Qiu, D. D. Zhou, C. T. He, J. P. Zhang, Angew. Chem. Int. Ed. 2020, 59, 23322–23328; 10.1002/anie.202011300 CASPubMedWeb of Science®Google ScholarAngew. Chem. 2020, 132, 23522–23528. 10.1002/ange.202011300 Google Scholar 22C. Heering, I. Boldog, V. Vasylyeva, J. Sanchiz, C. Janiak, CrystEngComm 2013, 15, 9757–9768. 10.1039/c3ce41426d CASWeb of Science®Google Scholar 23K. Shao, H. M. Wen, C. C. Liang, X. Xiao, X. W. Gu, B. Chen, G. Qian, B. Li, Angew. Chem. Int. Ed. 2022, 61, e202211523; 10.1002/anie.202211523 CASPubMedWeb of Science®Google ScholarAngew. Chem. 2022, 134, e202211523. 10.1002/ange.202211523 Google Scholar 24J. Jiang, Z. Lu, M. Zhang, J. Duan, W. Zhang, Y. Pan, J. Bai, J. Am. Chem. Soc. 2018, 140, 17825–17829. 10.1021/jacs.8b07589 CASPubMedWeb of Science®Google Scholar 25N. Kumar, S. Mukherjee, N. C. Harvey-Reid, A. A. Bezrukov, K. Tan, V. Martins, M. Vandichel, T. Pham, L. M. van Wyk, K. Oyekan, A. Kumar, K. A. Forrest, K. M. Patil, L. J. Barbour, B. Space, Y. N. Huang, P. E. Kruger, M. J. Zaworotko, Chem 2021, 7, 3085–3098. 10.1016/j.chempr.2021.07.007 CASPubMedWeb of Science®Google Scholar 26S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104. 10.1063/1.3382344 CASPubMedWeb of Science®Google Scholar 27C. Lefebvre, G. Rubez, H. Khartabil, J. C. Boisson, J. Contreras-Garcia, E. Henon, Phys. Chem. Chem. Phys. 2017, 19, 17928–17936. 10.1039/C7CP02110K CASPubMedWeb of Science®Google Scholar 28J. Liu, J. Miao, S. Ullah, K. Zhou, L. Yu, H. Wang, Y. Wang, T. Thonhauser, J. Li, ACS Mater. Lett. 2022, 4, 1227–1232. 10.1021/acsmaterialslett.2c00370 CASGoogle Scholar 29Y. Gong, C. Chen, R. Lively, K. Walton, Ind. Eng. Chem. Res. 2021, 60, 9940–9947. 10.1021/acs.iecr.1c01291 CASWeb of Science®Google Scholar 30H. Kaur, S. S. Chandel, A. Karmakar, S. Sinha-Ray, V. Krishnan, R. R. Koner, Chem. Eng. J. 2022, 443, 136212. 10.1016/j.cej.2022.136212 CASWeb of Science®Google Scholar 31S. M. Towsif Abtab, D. Alezi, P. M. Bhatt, A. Shkurenko, Y. Belmabkhout, H. Aggarwal, Ł. J. Weseliński, N. Alsadun, U. Samin, M. N. Hedhili, M. Eddaoudi, Chem 2018, 4, 94–105. 10.1016/j.chempr.2017.11.005 CASWeb of Science®Google Scholar 32R. B. Lin, L. Li, H. Wu, H. Arman, B. Li, R. G. Lin, W. Zhou, B. Chen, J. Am. Chem. Soc. 2017, 139, 8022–8028. 10.1021/jacs.7b03850 CASPubMedWeb of Science®Google Scholar 33X. Shen, K. Hii Ru Yie, X. Wu, Z. Zhou, A. Sun, A. M. Al-bishari, K. Fang, M. A. Al-Baadani, Z. Deng, P. Ma, J. Liu, Chem. Eng. J. 2022, 430, 133094. 10.1016/j.cej.2021.133094 CASWeb of Science®Google Scholar 34H. Jasuja, N. C. Burtch, Y. G. Huang, Y. Cai, K. S. Walton, Langmuir 2013, 29, 633–642. 10.1021/la304204k CASPubMedWeb of Science®Google Scholar 35W. J. Xie, S. Cha, T. Ohto, W. Mizukami, Y. Mao, M. Wagner, M. Bonn, J. Hunger, Y. Nagata, Chem 2018, 4, 2615–2627. 10.1016/j.chempr.2018.08.020 CASWeb of Science®Google Scholar Citing Literature Volume135, Issue11March 6, 2023e202218596 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation
Referência(s)