Artigo Acesso aberto Revisado por pares

Artificial extracellular matrix scaffolds of mobile molecules enhance maturation of human stem cell-derived neurons

2023; Elsevier BV; Volume: 30; Issue: 2 Linguagem: Inglês

10.1016/j.stem.2022.12.010

ISSN

1934-5909

Autores

Zaida Álvarez, José Antonio Ortega, Kohei Sato, Ivan R. Sasselli, Alexandra N. Edelbrock, Ruomeng Qiu, Kelly A. Marshall, Thao Phuong Nguyen, Cara S. Smith, Katharina A. Quinlan, Vasileios Papakis, Zois Syrgiannis, Nicholas A. Sather, Chiara Musumeci, Elisabeth Engel, Samuel I. Stupp, Evangelos Kiskinis,

Tópico(s)

Advanced biosensing and bioanalysis techniques

Resumo

Human induced pluripotent stem cell (hiPSC) technologies offer a unique resource for modeling neurological diseases. However, iPSC models are fraught with technical limitations including abnormal aggregation and inefficient maturation of differentiated neurons. These problems are in part due to the absence of synergistic cues of the native extracellular matrix (ECM). We report on the use of three artificial ECMs based on peptide amphiphile (PA) supramolecular nanofibers. All nanofibers display the laminin-derived IKVAV signal on their surface but differ in the nature of their non-bioactive domains. We find that nanofibers with greater intensity of internal supramolecular motion have enhanced bioactivity toward hiPSC-derived motor and cortical neurons. Proteomic, biochemical, and functional assays reveal that highly mobile PA scaffolds caused enhanced β1-integrin pathway activation, reduced aggregation, increased arborization, and matured electrophysiological activity of neurons. Our work highlights the importance of designing biomimetic ECMs to study the development, function, and dysfunction of human neurons.

Referência(s)