Chemical Language Models for Applications in Medicinal Chemistry
2023; Future Science Ltd; Volume: 15; Issue: 2 Linguagem: Inglês
10.4155/fmc-2022-0315
ISSN1756-8927
AutoresAtsushi Yoshimori, Hengwei Chen, Jürgen Bajorath,
Tópico(s)Biomedical Text Mining and Ontologies
ResumoFuture Medicinal ChemistryVol. 15, No. 2 EditorialChemical language models for applications in medicinal chemistryAtsushi Yoshimori, Hengwei Chen & Jürgen BajorathAtsushi YoshimoriInstitute for Theoretical Medicine, Inc., 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-0012, Japan, Hengwei ChenDepartment of Life Science Informatics & Data Science, B-IT, LIMES Program Unit Chemical Biology & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, D-53115, Bonn, Germany & Jürgen Bajorath *Author for correspondence: Tel.: +49 228 7369 100; E-mail Address: bajorath@bit.uni-bonn.dehttps://orcid.org/0000-0002-0557-5714Department of Life Science Informatics & Data Science, B-IT, LIMES Program Unit Chemical Biology & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, D-53115, Bonn, GermanyPublished Online:2 Feb 2023https://doi.org/10.4155/fmc-2022-0315AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleKeywords: chemical language modelsdeep learninggenerative modelingmedicinal chemistry applicationsmolecular designReferences1. Segler MHS, Kogej T, Tyrchan C, Waller MP. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent. Sci. 4(1), 120–131 (2018).Crossref, Medline, CAS, Google Scholar2. Gomez-Bombarelli R, Wei JN, Duvenaud D et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4(2), 268–276 (2018).Crossref, Medline, CAS, Google Scholar3. Winter R, Montanari F, Steffen A, Briem H, Noé F, Clevert D-A. Efficient multi-objective molecular optimization in a continuous latent space. Chem. Sci. 10(34), 8016–8024 (2019).Crossref, Medline, CAS, Google Scholar4. You J, Liu B, Ying Z, Pande V, Leskovec J. Graph convolutional policy network for goal-directed molecular graph generation. Adv. Neural Inf. Process. Syst. 31(1), 6412–6422 (2018).Google Scholar5. Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: generative models for matter engineering. Science 361(6400), 360–365 (2018).Crossref, Medline, CAS, Google Scholar6. Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988).Crossref, CAS, Google Scholar7. Krenn M, Häse F, Nigam A, Friederich P, Aspuru-Guzik A. SELFIES: a robust representation of semantically constrained graphs with an example application in chemistry. arXiv preprint arXiv:1905.13741 (2019).Google Scholar8. Skinnider MA, Stacey RG, Wishart DS, Foster LJ. Chemical language models enable navigation in sparsely populated chemical space. Nat. Mach. Intell. 3(9), 759–770 (2021).Crossref, Google Scholar9. Flam-Shepherd D, Zhu K, Aspuru-Guzik A. Language models can learn complex molecular distributions. Nat. Commun. 13(1), e3293 (2022).Crossref, Medline, CAS, Google Scholar10. Hirschberg J, Manning CD. Advances in natural language processing. Science 349(6245), 261–266 (2015).Crossref, Medline, CAS, Google Scholar11. Hochreiter S, Schmidhuber J. Long short-term memory. Neur. Comput. 9(8), 1735–1780 (1997).Crossref, Medline, CAS, Google Scholar12. Olivecrona M, Blaschke T, Engkvist O, Chen H. Molecular de novo design through deep reinforcement learning. J. Cheminform. 9(1), e48 (2017).Crossref, Medline, Google Scholar13. Luong M-T, Pham H, Manning CD. Effective approaches to attention-based neural machine translation. Proceedings of: The 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal, 17–21 September 2015.Crossref, Google Scholar14. Vaswani A, Shazeer N, Parmar N et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30(1), 5998–6008 (2017).Google Scholar15. He J, You H, Sandström E et al. Molecular optimization by capturing chemist's intuition using deep neural networks. J. Cheminform. 13(1), e26 (2021).Crossref, Medline, CAS, Google Scholar16. Schwaller P, Laino T, Gaudin T et al. Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS Cent. Sci. 5(9), 1572–1583 (2019).Crossref, Medline, CAS, Google Scholar17. Tetko IV, Karpov P, Van Deursen R, Godin G. State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis. Nat. Commun. 11(1), e5575 (2020).Crossref, Medline, CAS, Google Scholar18. Yoshimori A, Bajorath J. The SAR matrix method and an artificially intelligent variant for the identification and structural organization of analog series, SAR analysis, and compound design. Mol. Inform. 39(12), e2000045 (2020).Crossref, Medline, CAS, Google Scholar19. Umedera K, Yoshimori A, Chen H, Kouji H, Nakamura H, Bajorath J. DeepCubist: molecular generator for designing peptidomimetics based on complex three-dimensional scaffolds. J. Comput. Aided. Mol. Des. 37(2), 107–115 (2022).Crossref, Medline, Google Scholar20. Chen H, Vogt M, Bajorath J. DeepAC–conditional transformer-based chemical language model for the prediction of activity cliffs formed by bioactive compounds. Digit. Discov. 1(6), 898–909 (2022).Crossref, Google Scholar21. Yoshimori A, Bajorath J. DeepAS–chemical language model for the extension of active analogue series. Bioorg. Med. Chem. 66(1), e116808 (2022).Crossref, Medline, CAS, Google Scholar22. Yoshimori A, Bajorath J. Computational method for the systematic alignment of analogue series with structure-activity relationship transfer potential across different targets. Eur. J. Med. Chem. 239(1), e114558 (2022).Crossref, Medline, CAS, Google Scholar23. Umedera K, Yoshimori A, Bajorath J, Nakamura H. Design of MMP-1 inhibitors via SAR transfer and experimental validation. Sci. Rep. 12(1), e20915 (2022).Crossref, Medline, CAS, Google ScholarFiguresReferencesRelatedDetailsCited ByDo Large Language Models Understand Chemistry? A Conversation with ChatGPT16 March 2023 | Journal of Chemical Information and Modeling, Vol. 63, No. 6 Vol. 15, No. 2 STAY CONNECTED Metrics Downloaded 144 times History Received 29 December 2022 Accepted 19 January 2023 Published online 2 February 2023 Published in print January 2023 Information© 2023 Newlands PressKeywordschemical language modelsdeep learninggenerative modelingmedicinal chemistry applicationsmolecular designFinancial & competing interests disclosureA Yoshimori is CEO of the Institute for Theoretical Medicine, Inc. (ITM), which provides services and scientific software for the pharmaceutical industry, and J Bajorath is a consultant to ITM. The authors have no other relevant affiliations or financial involvement with any other organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.No writing assistance was utilized in the production of this manuscript.PDF download
Referência(s)